The Maki–Thompson rumor model is defined by assuming that a population represented by a graph is subdivided into three classes of individuals; namely, ignorants, spreaders and stiflers. A spreader tells the rumor to any of its nearest ignorant neighbors at rate one. At the same rate, a spreader becomes a stifler after a contact with other nearest neighbor spreaders, or stiflers. In this work we study the model on random trees. As usual we define a critical parameter of the model as the critical value around which the rumor either becomes extinct almost-surely or survives with positive probability. We analyze the existence of phase-transition regarding the survival of the rumor, and we obtain estimates for the mean range of the rumor. The applicability of our results is illustrated with examples on random trees generated from some well-known discrete distributions.
Agradeço primeiramente a Deus pelo dom da vida, a minha família e a todos que de alguma forma contribuíram para esse trabalho, como os professores por minha formação e aos colegas de doutorado pela troca de conhecimento e camaradagem.Agradeço aos meu pais, em especial à minha mãe, Francisca Vitorino Speroto, por me incentivar, me educar e ensinar o valor do respeito a todos, independentemente de origem, crença, raça ou classe social. À memória de Maria Medeiros Vitorino, João Vitorino, Florindo Sperotto, Anunciatta Rigotto e a todos os nossos ancestrais.Agradeço a toda equipe da EEEFM "Antônio dos Santos Neves" pelo apoio e esforços feitos para que eu pudesse ingressar no doutorado em Estatística, em especial, quero agradecer minha diretora Adriana Bonatto Merllo por me apoiar de forma incondicional.Aos meus grandes amigos por todos os momentos alegres e tristes, que sempre me deram força para concluir essa longa e árdua tarefa e em especial a
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.