In the current literature, the analytical tractability of discrete time option pricing models is guaranteed only for rather specific types of models and pricing kernels. We propose a very general and fully analytical option pricing framework, encompassing a wide class of discrete time models featuring multiple-component structure in both volatility and leverage, and a flexible pricing kernel with multiple risk premia. Although the proposed framework is general enough to include either GARCH-type volatility, Realized Volatility or a combination of the two, in this paper we focus on realized volatility option pricing models by extending the Heterogeneous Autoregressive Gamma (HARG) model of to incorporate heterogeneous leverage structures with multiple components, while preserving closed-form solutions for option prices. Applying our analytically tractable asymmetric HARG model to a large sample of S&P 500 index options, we demonstrate its superior ability to price out-of-the-money options compared to existing benchmarks.
We provide further evidence that markets trend on the medium term (months) and mean-revert on the long term (several years). Our results bolster Black's intuition that prices tend to be off roughly by a factor of 2, and take years to equilibrate. The story behind these results fits well with the existence of two types of behaviour in financial markets: "chartists", who act as trend followers, and "fundamentalists", who set in when the price is clearly out of line. Mean-reversion is a self-correcting mechanism, tempering (albeit only weakly) the exuberance of financial markets.
Trend and Value are pervasive anomalies, common to all financial markets. We address the problem of their co-existence and interaction within the framework of Heterogeneous Agent Based Models (HABM). More specifically, we extend the Chiarella (1992) model by adding noise traders and a non-linear demand of fundamentalists. We use Bayesian filtering techniques to calibrate the model on time series of prices across a variety of asset classes since 1800. The fundamental value is an output of the calibration, and does not require the use of an external pricing model. Our extended model reproduces many empirical observations, including the non-monotonic relation between past trends and future returns. The destabilizing activity of trend-followers leads to a qualitative change of mispricing distribution, from unimodal to bimodal, meaning that some markets tend to be over-(or under-) valued for long periods of time.
In the current literature, the analytical tractability of discrete time option pricing models is guaranteed only for rather specific types of models and pricing kernels. We propose a very general and fully analytical option pricing framework, encompassing a wide class of discrete time models featuring multiple-component structure in both volatility and leverage, and a flexible pricing kernel with multiple risk premia. Although the proposed framework is general enough to include either GARCH-type volatility, Realized Volatility or a combination of the two, in this paper we focus on realized volatility option pricing models by extending the Heterogeneous Autoregressive Gamma (HARG) model of to incorporate heterogeneous leverage structures with multiple components, while preserving closed-form solutions for option prices. Applying our analytically tractable asymmetric HARG model to a large sample of S&P 500 index options, we demonstrate its superior ability to price out-of-the-money options compared to existing benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.