Fine-tuning of gene expression is desirable for a wide range of applications in synthetic biology. In this context, RNA regulatory devices provide a powerful and highly functional tool. We developed a versatile, robust and reversible device to control gene expression by splicing regulation in human cells using an aptamer that is recognized by the Tet repressor TetR. Upon insertion in proximity to the 5′ splice site, intron retention can be controlled via the binding of TetR to the aptamer. Although we were able to demonstrate regulation for different introns, the genomic context had a major impact on regulation. In consequence, we advanced the aptamer to develop a splice device. Our novel device contains the aptamer integrated into a context of exonic and intronic sequences that create and maintain an environment allowing a reliable and robust splicing event. The exon-born, additional amino acids will then be cleaved off by a self-cleaving peptide. This design allows portability of the splicing device, which we confirmed by demonstrating its functionality in different gene contexts. Intriguingly, our splicing device shows a high dynamic range and low basal activity, i.e. desirable features that often prove a major challenge when implementing synthetic biology in mammalian cell lines.
Correct cellular localization is essential for the function of many eukaryotic proteins and hence cell physiology. Here, we present a synthetic genetic device that allows the control of nuclear and cytosolic localization based on controlled alternative splicing in human cells. The device is based on the fact that an alternative 3 ′ ′ ′ ′ ′ splice site is located within a TetR aptamer that in turn is positioned between the branch point and the canonical splice site. The novel splice site is only recognized when the TetR repressor is bound. Addition of doxycycline prevents TetR aptamer binding and leads to recognition of the canonical 3 ′ ′ ′ ′ ′ splice site. It is thus possible to produce two independent splice isoforms. Since the terminal loop of the aptamer may be replaced with any sequence of choice, one of the two isoforms may be extended by the respective sequence of choice depending on the presence of doxycycline. In a proof-of-concept study, we fused a nuclear localization sequence to a cytosolic target protein, thus directing the protein into the nucleus. However, the system is not limited to the control of nuclear localization. In principle, any target sequence can be integrated into the aptamer, allowing not only the production of a variety of different isoforms on demand, but also to study the function of mislocalized proteins. Moreover, it also provides a valuable tool for investigating the mechanism of alternative splicing in human cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.