The glucocorticoid receptor (GR) is phosphorylated at multiple sites within its N terminus (S203, S211, S226), yet the role of phosphorylation in receptor function is not understood. Using a range of agonists and GR phosphorylation site-specific antibodies, we demonstrated that GR transcriptional activation is greatest when the relative phosphorylation of S211 exceeds that of S226. Consistent with this finding, a replacement of S226 with an alanine enhances GR transcriptional response. Using a battery of compounds that perturb different signaling pathways, we found that BAPTA-AM, a chelator of intracellular divalent cations, and curcumin, a natural product with antiinflammatory properties, reduced hormone-dependent phosphorylation at S211. This change in GR phosphorylation was associated with its decreased nuclear retention and transcriptional activation. Molecular modeling suggests that GR S211 phosphorylation promotes a conformational change, which exposes a novel surface potentially facilitating cofactor interaction. Indeed, S211 phosphorylation enhances GR interaction with MED14 (vitamin D receptor interacting protein 150). Interestingly, in U2OS cells expressing a nonphosphorylated GR mutant S211A, the expression of IGF-binding protein 1 and interferon regulatory factor 8, both MED14-dependent GR target genes, was reduced relative to cells expressing wild-type receptor across a broad range of hormone concentrations. In contrast, the induction of glucocorticoid-induced leucine zipper, a MED14-independent GR target, was similar in S211A- and wild-type GR-expressing cells at high hormone levels, but was reduced in S211A cells at low hormone concentrations, suggesting a link between GR phosphorylation, MED14 involvement, and receptor occupancy. Phosphorylation also affected the magnitude of repression by GR in a gene-selective manner. Thus, GR phosphorylation at S211 and S226 determines GR transcriptional response by modifying cofactor interaction. Furthermore, the effect of GR S211 phosphorylation is gene specific and, in some cases, dependent upon the amount of activated receptor.
The hormone-activated glucocorticoid receptor (GR), through its N-and C-terminal transcriptional activation functions AF-1 and AF-2, controls the transcription of target genes presumably through interaction(s) with transcriptional regulatory factors. Utilizing a modified yeast two-hybrid approach, we have identified the tumor susceptibility gene 101 (TSG101) and the vitamin D receptor-interacting protein 150 (DRIP150) as proteins that interact specifically with a functional GR AF-1 surface. In yeast and mammalian cells, TSG101 represses whereas DRIP150 enhances GR AF-1-mediated transactivation. Thus, GR AF-1 is capable of recruiting both positive and negative regulatory factors that differentially regulate GR transcriptional enhancement. In addition, we show that another member of the DRIP complex, DRIP205, interacts with the GR ligand binding domain in a hormone-dependent manner and facilitates GR transactivation in concert with DRIP150. These results suggest that DRIP150 and DRIP205 functionally link GR AF-1 and AF-2, and represent important mediators of GR transcriptional enhancement.
The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR(153-336), containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR(153-336) fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.
Penetration of the bladder permeability barrier (BPB) is a major challenge when treating bladder diseases via intravesical delivery. To increase transurothelial migration and tissue and tumor cell uptake, poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) were modified by addition of a low molecular weight (2.5 kDa or 20 kDa) positively charged mucoadhesive polysaccharide, chitosan, to the NP surface. In designing these NPs, we balanced the adhesive properties of chitosan with the release and bioactivity of the siRNA. Chitosan functionalized NPs demonstrated increased binding to and uptake in intravesically instilled mouse bladders and human ureter at 10 times the level of unmodified NPs. Furthermore, we extended the bioactivity of survivin siRNA in vitro for up to 9 days and demonstrated a decrease in proliferation when using chitosan modified NPs relative to unmodified NPs. In addition, treatment of xenograft tumors with chitosan modified NPs that encapsulate survivin siRNA (NP-siSUR-CH2.5) resulted in a 65% reduction in tumor volume and a 75% decrease in survivin expression relative to tumors treated with blank chitosan NPs (NP-Bk-CH2.5). Our low molecular weight chitosan delivery system has the capacity to transport large amounts of siRNA across the urothelium and/or to the tumor site thus increasing therapeutic response.
Testes that remain undescended are associated with progressive loss of germ and Leydig cells, and nonpalpable testes predict severe germ cell loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.