Formalizing an old desire of Einstein, "ψ-epistemic theories" try to reproduce the predictions of quantum mechanics, while viewing quantum states as ordinary probability distributions over underlying objects called "ontic states." Regardless of one's philosophical views about such theories, the question arises of whether one can cleanly rule them out, by proving no-go theorems analogous to the Bell Inequality. In the 1960s, Kochen and Specker (who first studied these theories) constructed an elegant ψ-epistemic theory for Hilbert space dimension d = 2, but also showed that any deterministic ψ-epistemic theory must be "measurement contextual" in dimensions 3 and higher. Last year, the topic attracted renewed attention, when Pusey, Barrett, and Rudolph (PBR) showed that any ψ-epistemic theory must "behave badly under tensor product." In this paper, we prove that even without the Kochen-Specker or PBR assumptions, there are no ψ-epistemic theories in dimensions d ≥ 3 that satisfy two reasonable conditions: (1) symmetry under unitary transformations, and (2) "maximum nontriviality" (meaning that the probability distributions corresponding to any two non-orthogonal states overlap). This no-go theorem holds if the ontic space is either the set of quantum states or the set of unitaries. The proof of this result, in the general case, uses some measure theory and differential geometry. On the other hand, we also show the surprising result that without the symmetry restriction, one can construct maximally-nontrivial ψ-epistemic theories in every finite dimension d.
In 1994, Reck et al. showed how to realize any unitary transformation on a single photon using a product of beam splitters and phase shifters. Here we show that any single beam splitter that nontrivially mixes two modes also densely generates the set of unitary transformations (or orthogonal transformations, in the real case) on the single-photon subspace with m 3 modes. (We prove the same result for any two-mode real optical gate, and for any two-mode optical gate combined with a generic phase shifter.) Experimentally, this means that one does not need tunable beam splitters or phase shifters for universality: any nontrivial beam splitter is universal for linear optics. Theoretically, it means that one cannot produce "intermediate" models of linear optical computation (analogous to the Clifford group for qubits) by restricting the allowed beam splitters and phase shifters: there is a dichotomy; one either gets a trivial set or else a universal set. No similar classification theorem for gates acting on qubits is currently known. We leave open the problem of classifying optical gates that act on three or more modes.
A fundamental issue in the AdS/CFT correspondence is the wormhole growth paradox. Susskind's conjectured resolution of the paradox was to equate the volume of the wormhole with the circuit complexity of its dual quantum state in the CFT. We study the ramifications of this conjecture from a complexity-theoretic perspective. Specifically we give evidence for the existence of computationally pseudorandom states in the CFT, and argue that wormhole volume is measureable in a non-physical but computational sense, by amalgamating the experiences of multiple observers in the wormhole. In other words the conjecture equates a quantity which is difficult to compute with one which is easy to compute. The pseudorandomness argument further implies that this is a necessary feature of any resolution of the wormhole growth paradox, not just of Susskind's Complexity=Volume conjecture. As a corollary we conclude that either the AdS/CFT dictionary map must be exponentially complex, or the quantum Extended Church-Turing thesis must be false in quantum gravity.
We explore the space "just above" BQP by defining a complexity class PDQP (Product Dynamical Quantum Polynomial time) which is larger than BQP but does not contain NP relative to an oracle. The class is defined by imagining that quantum computers can perform measurements that do not collapse the wavefunction. This (non-physical) model of computation can efficiently solve problems such as Graph Isomorphism and Approximate Shortest Vector which are believed to be intractable for quantum computers. Furthermore, it can search an unstructured N -element list inÕ(N 1/3 ) time, but no faster than Ω(N 1/4 ), and hence cannot solve NP-hard problems in a black box manner. In short, this model of computation is more powerful than standard quantum computation, but only slightly so.Our work is inspired by previous work of Aaronson on the power of sampling the histories of hidden variables. However Aaronson's work contains an error in its proof of the lower bound for search, and hence it is unclear whether or not his model allows for search in logarithmic time. Our work can be viewed as a conceptual simplification of Aaronson's approach, with a provable polynomial lower bound for search. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.