We investigate the collective plasmonic modes in a chain of metallic nanoparticles that are coupled by nearfield interactions. The size-and momentum-dependent nonradiative Landau damping and radiative decay rates are calculated analytically within an open quantum system approach. These decay rates determine the excitation propagation along the chain. In particular, the behavior of the radiative decay rate as a function of the plasmon wavelength leads to a transition from an exponential decay of the collective excitation for short distances to an algebraic decay for large distances. Importantly, we show that the exponential decay is of a purely nonradiative origin. Our transparent model enables us to provide analytical expressions for the polarization-dependent plasmon excitation profile along the chain and for the associated propagation length. Our theoretical analysis constitutes an important step in the quest for the optimal conditions for plasmonic propagation in nanoparticle chains.
We develop a general quantum theory of the coupled plasmonic modes resulting from the near-field interaction between localized surface plasmons in a heterogeneous metallic nanoparticle dimer. In particular, we provide analytical expressions for the frequencies and decay rates of the bright and dark plasmonic modes. We show that, for sufficiently small nanoparticles, the main decay channel for the dark plasmonic mode, which is weakly coupled to light and, hence, immune to radiation damping, is of nonradiative origin and corresponds to Landau damping, i.e., decay into electron-hole pairs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.