We explore the challenges of planning trajectories for quadrotors through cluttered indoor environments. We extend the existing work on polynomial trajectory generation by presenting a method of jointly optimizing polynomial path segments in an unconstrained quadratic program that is numerically stable for highorder polynomials and large numbers of segments, and is easily formulated for efficient sparse computation. We also present a technique for automatically selecting the amount of time allocated to each segment, and hence the quadrotor speeds along the path, as a function of a single parameter determining aggressiveness, subject to actuator constraints. The use of polynomial trajectories, coupled with the differentially flat representation of the quadrotor, eliminates the need for computationally intensive sampling and simulation in the high dimensional state space of the vehicle during motion planning. Our approach generates high-quality trajectories much faster than purely sampling-based optimal kinodynamic planning methods, but sacrifices the guarantee of asymptotic convergence to the global optimum that those methods provide. We demonstrate the performance of our algorithm by efficiently generating trajectories through challenging indoor spaces and successfully traversing them at speeds up to 8 m/s. A demonstration of our algorithm and flight performance is available at: http://groups.csail.mit.edu/rrg/quad_polynomial_ trajectory_planning.
Abstract-In this paper we address the problem of motion planning in the presence of state uncertainty, also known as planning in belief space. The work is motivated by planning domains involving nontrivial dynamics, spatially varying measurement properties, and obstacle constraints. To make the problem tractable, we restrict the motion plan to a nominal trajectory stabilized with a linear estimator and controller. This allows us to predict distributions over future states given a candidate nominal trajectory. Using these distributions to ensure a bounded probability of collision, the algorithm incrementally constructs a graph of trajectories through state space, while efficiently searching over candidate paths through the graph at each iteration. This process results in a search tree in belief space that provably converges to the optimal path. We analyze the algorithm theoretically and also provide simulation results demonstrating its utility for balancing information gathering to reduce uncertainty and finding low cost paths.
Abstract-In this paper we present a state estimation method based on an inertial measurement unit (IMU) and a planar laser range finder suitable for use in real-time on a fixedwing micro air vehicle (MAV). The algorithm is capable of maintaing accurate state estimates during aggressive flight in unstructured 3D environments without the use of an external positioning system. Our localization algorithm is based on an extension of the Gaussian Particle Filter. We partition the state according to measurement independence relationships and then calculate a pseudo-linear update which allows us to use 20x fewer particles than a naive implementation to achieve similar accuracy in the state estimate. We also propose a multi-step forward fitting method to identify the noise parameters of the IMU and compare results with and without accurate position measurements. Our process and measurement models integrate naturally with an exponential coordinates representation of the attitude uncertainty. We demonstrate our algorithms experimentally on a fixed-wing vehicle flying in a challenging indoor environment.
In this paper, we describe trajectory planning and state estimation algorithms for aggressive flight of micro aerial vehicles in known, obstacledense environments. Finding aggressive but dynamically feasible and collision-free trajectories in cluttered environments requires trajectory optimization and state estimation in the full state space of the vehicle, which is usually computationally infeasible on realistic time scales for real vehicles and sensors. We first build on previous work of van Nieuwstadt and Murray [51] and Mellinger and Kumar [38], to show how a search process can be coupled with optimization in the output space of a differentially flat vehicle model to find aggressive trajectories that utilize the full maneuvering capabilities of a quadrotor. We further extend this work to vehicles with complex, Dubins-type dynamics and present a novel trajectory representation called a Dubins-Polynomial trajectory, which allows us to optimize trajectories for fixed-wing vehicles. To provide accurate state estimation for aggressive flight, we show how the Gaussian particle filter can be extended to allow laser range finder localization to be combined with a Kalman filter. This formulation allows similar estimation accuracy to particle filtering in the full vehicle state but with an order of magnitude more efficiency. We conclude with experiments demonstrating the execution of quadrotor and fixed-wing trajectories in cluttered environments. We show results of aggressive flight at speeds of up to 8 m/s for the quadrotor and 11 m/s for the fixed-wing aircraft.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.