Reactions of the zirconium amide guanidinates (R2N)2M[(i)PrNC(NR2)N(i)Pr]2 (R = Me, M = Zr, 1; M = Hf, 2; R = Et, M = Zr, 3) with O2 or H2O give products that are consistent with the oxo dimers {M(μ-O)[(i)PrNC(NR2)N(i)Pr]2}2 (R = Me, M = Zr, 4; M = Hf, 5; R = Et, M = Zr, 6) and polymers {M(μ-O)[(i)PrNC(NR2)N(i)Pr]2}n (R = Me, M = Zr, 7; M = Hf, 8; R = Et, M = Zr, 9). Mass spectrometric (MS) analyses of the reactions of water in air with 1 and 2 show formation of the Zr monomer Zr(═O)[(i)PrNC(NMe2)N(i)Pr]2 (10), oxo dimers 4 and 5, and dihydroxyl complexes M(OH)2[(i)PrNC(NMe2)N(i)Pr]2 (M = Zr, 11; Hf, 12). Similar MS analyses of the reaction of diethylamide guanidinate 3 with water in air show the formation of Zr(═O)[(i)PrNC(NEt2)N(i)Pr]2 (13), Zr(OH)2[(i)PrNC(NEt2)N(i)Pr]2 (14), 6, and {(Et2N)Zr[(i)PrNC(NEt2)N(i)Pr]2}(+) (15). Kinetic studies of the reaction between 1 and a continuous flow of 1.0 atm of O2 at 80-105 °C indicate that it follows pseudo-first-order kinetics with ΔH(‡) = 8.7(1.1) kcal/mol, ΔS(‡) = -54(3) eu, ΔG(‡)(358 K) = 28(2) kcal/mol, and a half-life of 213(1) min at 85 °C.