We examine an infinite system of ordinary differential equations that models a discrete fragmentation process in which mass loss can occur. The problem is treated as an abstract Cauchy problem, posed in an appropriate Banach space. Perturbation techniques from the theory of semigroups of operators are used to establish the existence and uniqueness of physically meaningful solutions under minimal restrictions on the fragmentation rates. In one particular case an explicit formula for the associated semigroup is obtained and this enables additional properties, such as compactness of the resolvent and analyticity of the semigroup, to be deduced. Another explicit solution of this particular fragmentation problem, in which mass is apparently created from a zero-mass initial state, is also investigated, and the theory of Sobolev towers is used to prove that the solution actually emanates from an initial infinite cluster of unit mass
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.