While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.
Transport networks serve critical functions in biological and engineered systems, and yet their design requires trade-offs between competing objectives. Due to their sessile lifestyle, plants need to optimize their architecture to efficiently acquire and distribute resources while also minimizing costs in building infrastructure. To understand how plants resolve this design trade-off, we used high-precision three-dimensional laser scanning to map the architectures of tomato, tobacco, or sorghum plants grown in several environmental conditions and through multiple developmental time points, scanning in total 505 architectures from 37 plants. Using a graph-theoretic algorithm that we developed to evaluate design strategies, we find that plant architectures lie along the Pareto front between two simple length-based objectives-minimizing total branch length and minimizing nutrient transport distance-thereby conferring a selective fitness advantage for plant transport processes. The location along the Pareto front can distinguish among species and conditions, suggesting that during evolution, natural selection may employ common network design principles despite different optimization trade-offs.
In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.
While genome recoding using quadruplet codons to incorporate non-proteinogenic amino acids is attractive for biotechnology and bioengineering purposes, the mechanism through which such codons are translated is poorly understood. Here we investigate translation of quadruplet codons by a +1-frameshifting tRNA, SufB2, that contains an extra nucleotide in its anticodon loop. Natural post-transcriptional modification of SufB2 in cells prevents it from frameshifting using a quadruplet-pairing mechanism such that it preferentially employs a triplet-slippage mechanism. We show that SufB2 uses triplet anticodon-codon pairing in the 0-frame to initially decode the quadruplet codon, but subsequently shifts to the +1-frame during tRNA-mRNA translocation. SufB2 frameshifting involves perturbation of an essential ribosome conformational change that facilitates tRNA-mRNA movements at a late stage of the translocation reaction. Our results provide a molecular mechanism for SufB2-induced +1 frameshifting and suggest that engineering of a specific ribosome conformational change can improve the efficiency of genome recoding.
SUMMARY Plant architectures can be characterized statistically by their spatial density function, which specifies the probability of finding a branch at each location in the territory occupied by a plant. Using high-precision 3D scanning, we analyzed 557 plant shoot architectures, representing three species, grown across three to five environmental conditions, and through 20–30 developmental time points. We found two elegant properties in the spatial density functions of these architectures: all functions could be nearly modified in one direction without affecting the density in orthogonal directions (called “separability”), and all functions shared the same underlying shape, aside from stretching and compression (called “self-similarity”). Surprisingly, despite their striking visual diversity, we discovered that all architectures could be described as variations on a single underlying function: a Gaussian density function truncated at roughly two SDs. We also observed systematic variation in the spatial density functions across species, growth conditions, and time, which suggests functional specialization despite following the same general design form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.