Despite having many key roles in cellular biology, directly imaging biologically important RNAs has been hindered by a lack of fluorescent tools equivalent to the fluorescent proteins available to study cellular proteins. Ideal RNA labelling systems must preserve biological function, have photophysical properties similar to existing fluorescent proteins, and be compatible with established live and fixed cell protein labelling strategies. Here, we report a microfluidics-based selection of three new high-affinity RNA Mango fluorogenic aptamers. Two of these are as bright or brighter than enhanced GFP when bound to TO1-Biotin. Furthermore, we show that the new Mangos can accurately image the subcellular localization of three small non-coding RNAs (5S, U6, and a box C/D scaRNA) in fixed and live mammalian cells. These new aptamers have many potential applications to study RNA function and dynamics both in vitro and in mammalian cells.
RNA molecules play vital roles in many cellular processes. Visualising their dynamics in live cells at single-molecule resolution is essential to elucidate their role in RNA metabolism. RNA aptamers, such as Spinach and Mango, have recently emerged as a powerful background-free technology for live-cell RNA imaging due to their fluorogenic properties upon ligand binding. Here, we report a novel array of Mango II aptamers for RNA imaging in live and fixed cells with high contrast and single-molecule sensitivity. Direct comparison of Mango II and MS2-tdMCP-mCherry dual-labelled mRNAs show marked improvements in signal to noise ratio using the fluorogenic Mango aptamers. Using both coding (β-actin mRNA) and long non-coding (NEAT1) RNAs, we show that the Mango array does not affect cellular localisation. Additionally, we can track single mRNAs for extended time periods, likely due to bleached fluorophore replacement. This property makes the arrays readily compatible with structured illumination super-resolution microscopy.
Rheological forces in the blood trigger the unfolding of von Willebrand factor (VWF) and its A2 domain, exposing the scissile bond for proteolysis by ADAMTS13. Under quiescent conditions, the scissile bond is hidden by the folded structure due to the stabilisation provided by the structural specialisations of the VWF A2 domain, a vicinal disulphide bond, a calcium binding site and a N1574-glycan.The reduced circulating high MW multimers of VWF in patients with type 2A von Willebrand disease (VWD) may be associated with mutations within the VWF A2 domain and this is attributed to enhanced ADAMTS13 proteolysis. We investigated 11 VWF A2 domain variants identified in patients with type 2A VWD. In recombinant full-length VWF, enhanced ADAMTS13 proteolysis was detected for all of the expressed variants in the presence of urea-induced denaturation. A subset of the FLVWF variants displayed enhanced proteolysis in the absence of urea. The mechanism of enhancement was investigated using a novel VWF A2 domain FRET construct. In the absence of induced unfolding, 7/8 of the expressed mutants exhibited a disrupted domain fold, causing spatial separation of the N- and C- termini. Three of the type 2A mutants were not secreted when studied within the VWF A2 domain FRET construct. Urea denaturation revealed for all 8 secreted mutants reduced unfolding cooperativity and stability of the VWF A2 domain. As folding stability was progressively disrupted, proteolysis by ADAMTS13 increased. Due to the range of folding stabilities and wide distribution of VWF A2 domain mutations studied, we conclude that these mutations disrupt regulated folding of the VWF A2 domain. They enhance unfolding by inducing separation of N- and C-termini, thereby promoting a more open conformation that reveals its binding sites for ADAMTS13 and the scissile bond.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.