This paper describes the design and preliminary testing of a planar parallel wire robot that adheres to the surface of the beating heart and provides a stable platform for minimally invasive epicardial therapies. The device is deployed through a small subxiphoid skin incision and attaches to the heart using suction. This methodology obviates mechanical stabilization and lung deflation, which are typically required during minimally invasive beating-heart surgery. The prototype design involves three vacuum chambers connected by two flexible arms. The chambers adhere to the epicardium, forming the vertices of a triangular base structure. Three cables connect a movable end-effector head to the three bases; the cables then pass out of the body to external actuators. The surgical tool moves within the triangular workspace to perform injections, ablation, or other tasks on the beating heart. Tests in vitro and in vivo were conducted to demonstrate the capabilities of the system. Tests in vivo successfully demonstrated the ability to deploy through a subxiphoid incision, adhere to the surface of the beating heart, move the surgical tool head within the robot’s workspace, and perform injections into the myocardium.
Gene therapies for heart failure have emerged in recent years, yet they lack an effective method for minimally invasive, uniform delivery. To address this need we developed a minimally invasive parallel wire robot for epicardial interventions. Accurate and safe interventions using this device require control of force in addition to injector position. Accounting for the nonidealities of the device design, however, yields nonlinear and underconstrained statics. This work solves these equations and demonstrates the efficacy of using this information in a parallel control scheme, which is shown to provide superior positioning compared to a position-only controller.
Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on Cerberus was limited to controlling the device using only position feedback. In order to ensure safety for both the patient and the device, as well as to improve the performance of the device, this paper presents work on enhancing the existing system with force feedback capabilities. By modeling the statics of the system and developing a tension distribution optimization technique, existing position control schemes were modified to a hybrid force/position controller. Experimental results show that using a hybrid force-position control scheme as opposed to position decreases positioning error by 38%.
Gene therapies have emerged as a promising treatment for congestive heart failure, yet they lack a method for minimally invasive, uniform delivery. To address this need we developed Cerberus, a minimally invasive parallel wire robot for cardiac interventions. Prior work on controlling the movement of Cerberus required accurate knowledge of device geometry. In order to determine the geometry of the device in vivo, this paper presents work on developing an auto-calibration procedure to measure the geometry of the robot using force sensors to move injector. The presented auto-calibration routine is able to identify the shape of the device to within 0.5 mm and 0.9°.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.