A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2-azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine-derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β-unsaturated ester moiety linked to the 4-position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83–99 % ee) and in good yields (60–90 %). Calculations revealed that stepwise C–C bond formation and proton transfer via a chair-shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst.
The highly diastereo- and enantioselective Mannich addition/cyclisation reaction of α-substituted isocyanoacetate ester pronucleophiles and (hetero)aryl and alkyl methyl ketone-derived ketimines using a silver acetate and a cinchona-derived amino phosphine binary catalyst system is reported.
A novel synthesis of β-aryloxycarboxylic esters via asymmetric hydrogenation of the corresponding β-aryloxy-α,β-unsaturated esters has been demonstrated. Bis(norbornadiene)rhodium(I) tetrafluoroborate (1 mol %) and Walphos W008-1 were used to generate the saturated products with high enantioselectivity and in high yield. The tolerability of the reaction to a diverse range of substituents on the aromatic ring was also explored.
An efficient enantioselective 12-step synthesis of the ABCDE pentacyclic core of the Strychnos alkaloids is described. A key feature of this approach is an organocatalyzed enantioselective desymmetrization to generate the morphan core in high ee and dr. After palladium-catalyzed installation of the indole moiety, a subsequent 5-exo-trig dearomatizing atom transfer radical cyclization was developed to construct the C-ring. Following a series of functional group interconversions, the pentacyclic amine core was obtained with all the relevant architecture including five stereocenters pertaining to the Strychnos alkaloids.
A new catalytic asymmetric desymmetrization reaction for the synthesis of enantioenriched derivatives of 2‐azabicyclo[3.3.1]nonane, a key motif common to many alkaloids, has been developed. Employing a cyclohexanediamine‐derived primary amine organocatalyst, a range of prochiral cyclohexanone derivatives possessing an α,β‐unsaturated ester moiety linked to the 4‐position afforded the bicyclic products, which possess three stereogenic centers, as single diastereoisomers in high enantioselectivity (83–99 % ee) and in good yields (60–90 %). Calculations revealed that stepwise CC bond formation and proton transfer via a chair‐shaped transition state dictate the exclusive endo selectivity and enabled the development of a highly enantioselective primary amine catalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.