Significance Lévy walks are a random walk search strategy used by a wide variety of organisms when searching for heterogeneously distributed food. This type of search involves mostly short move steps (defined as the distance traveled before pausing or changing direction) combined with rarer longer move steps. Here, we show that the Hadza, hunter–gatherers from northern Tanzania, perform Lévy walks when foraging for a wide variety of food items, suggesting that Lévy walks are an important movement pattern for the most cognitively complex foragers on Earth. Our results suggest that scale-invariant, superdiffusive movement profiles are a fundamental feature of human landscape use, regardless of the physical or cultural environment, and may have played an important role in the evolution of human mobility.
Humans and other primates are distinct among placental mammals in having exceptionally slow rates of growth, reproduction, and aging. Primates' slow life history schedules are generally thought to reflect an evolved strategy of allocating energy away from growth and reproduction and toward somatic investment, particularly to the development and maintenance of large brains. Here we examine an alternative explanation: that primates' slow life histories reflect low total energy expenditure (TEE) (kilocalories per day) relative to other placental mammals. We compared doubly labeled water measurements of TEE among 17 primate species with similar measures for other placental mammals. We found that primates use remarkably little energy each day, expending on average only 50% of the energy expected for a placental mammal of similar mass. Such large differences in TEE are not easily explained by differences in physical activity, and instead appear to reflect systemic metabolic adaptation for low energy expenditures in primates. Indeed, comparisons of wild and captive primate populations indicate similar levels of energy expenditure. Broad interspecific comparisons of growth, reproduction, and maximum life span indicate that primates' slow metabolic rates contribute to their characteristically slow life histories.metabolism | evolution | ecology T he pace at which organisms grow, reproduce, and age must ultimately reflect their physiological energy expenditure; growth of new tissue (self or offspring) and the maintenance and repair of the body all require metabolic investment. In principle, either the total energy budget, also called "total energy expenditure" (TEE) (kilocalories per day), or allocation within the energy budget could change over evolutionary time to fuel changes in life history schedules. Studies of mammalian life history have generally focused on variation in allocation (1-6), in part because of the lack of evidence correlating gross measures of energy expenditure with life history. The basal metabolic rate (BMR) (kilocalories per day), often used as an index of the total energy budget, is unrelated to rates of growth, reproduction, or aging among placental mammals when accounting for the effects of body mass and phylogenetic relatedness (7-9). The focus on allocation is also consistent with evidence, albeit mixed, for evolved tradeoffs among metabolically expensive organs (10,11) and between metabolically expensive organs and reproductive output (12).Variation in allocation undoubtedly affects life history schedules, but the use of BMR as a measure of the energy budget may obscure the complementary role of variation in energy throughput. For example, senescence due to the production of free radicals and other metabolic damage is a consequence of TEE, not only the portion expended on BMR (7). Further, because BMR accounts for less than half of TEE for most mammals (13), analyses of BMR do not reflect the full amount of energy potentially available for growth and reproduction. Indeed, the relationship bet...
BackgroundDebates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease energy costs of bipedalism by 3.6 Ma.Methodology/Principal FindingsUsing an experimental design, we show that the Laetoli hominins walked with weight transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials matches weight distribution patterns found in the Laetoli footprints.ConclusionsThese results provide us with the earliest direct evidence of kinematically human-like bipedalism currently known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important selection pressure on hominin bipeds by 3.6 Ma.
Several biological changes characterize normal brain aging in humans. Although some of these age-associated neural alterations are also found in other species, overt volumetric decline of particular brain structures, such as the hippocampus and frontal lobe, has only been observed in humans. However, comparable data on the effects of aging on regional brain volumes have not previously been available from our closest living relatives, the chimpanzees. In this study, we used MRI to measure the volume of the whole brain, total neocortical gray matter, total neocortical white matter, frontal lobe gray matter, frontal lobe white matter, and the hippocampus in a cross-sectional sample of 99 chimpanzee brains encompassing the adult lifespan from 10 to 51 y of age. We compared these data to brain structure volumes measured in 87 adult humans from 22 to 88 y of age. In contrast to humans, who showed a decrease in the volume of all brain structures over the lifespan, chimpanzees did not display significant age-related changes. Using an iterative age-range reduction procedure, we found that the significant aging effects in humans were because of the leverage of individuals that were older than the maximum longevity of chimpanzees. Thus, we conclude that the increased magnitude of brain structure shrinkage in human aging is evolutionarily novel and the result of an extended lifespan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.