The opportunity to harness the RNA interference (RNAi) pathway to silence disease-causing genes holds great promise for the development of therapeutics directed against targets that are otherwise not addressable with current medicines. Although there are numerous examples of in vivo silencing of target genes after local delivery of small interfering RNAs (siRNAs), there remain only a few reports of RNAi-mediated silencing in response to systemic delivery of siRNA, and there are no reports of systemic efficacy in non-rodent species. Here we show that siRNAs, when delivered systemically in a liposomal formulation, can silence the disease target apolipoprotein B (ApoB) in non-human primates. APOB-specific siRNAs were encapsulated in stable nucleic acid lipid particles (SNALP) and administered by intravenous injection to cynomolgus monkeys at doses of 1 or 2.5 mg kg(-1). A single siRNA injection resulted in dose-dependent silencing of APOB messenger RNA expression in the liver 48 h after administration, with maximal silencing of >90%. This silencing effect occurred as a result of APOB mRNA cleavage at precisely the site predicted for the RNAi mechanism. Significant reductions in ApoB protein, serum cholesterol and low-density lipoprotein levels were observed as early as 24 h after treatment and lasted for 11 days at the highest siRNA dose, thus demonstrating an immediate, potent and lasting biological effect of siRNA treatment. Our findings show clinically relevant RNAi-mediated gene silencing in non-human primates, supporting RNAi therapeutics as a potential new class of drugs.
Short interfering RNAs (siRNAs) that mediate specific gene silencing through RNA interference (RNAi) are widely used to study gene function and are also being developed for therapeutic applications. Many nucleic acids, including double- (dsRNA) and single-stranded RNA (ssRNA), can stimulate innate cytokine responses in mammals. Despite this, few studies have questioned whether siRNA may have a similar effect on the immune system. This could significantly influence the in vivo application of siRNA owing to off-target effects and toxicities associated with immune stimulation. Here we report that synthetic siRNAs formulated in nonviral delivery vehicles can be potent inducers of interferons and inflammatory cytokines both in vivo in mice and in vitro in human blood. The immunostimulatory activity of formulated siRNAs and the associated toxicities are dependent on the nucleotide sequence. We have identified putative immunostimulatory motifs that have allowed the design of siRNAs that can mediate RNAi but induce minimal immune activation.
The efficacy of lipid-encapsulated, chemically modified short interfering RNA (siRNA) targeted to hepatitis B virus (HBV) was examined in an in vivo mouse model of HBV replication. Stabilized siRNA targeted to the HBV RNA was incorporated into a specialized liposome to form a stable nucleic-acid-lipid particle (SNALP) and administered by intravenous injection into mice carrying replicating HBV. The improved efficacy of siRNA-SNALP compared to unformulated siRNA correlates with a longer half-life in plasma and liver. Three daily intravenous injections of 3 mg/kg/day reduced serum HBV DNA >1.0 log(10). The reduction in HBV DNA was specific, dose-dependent and lasted for up to 7 d after dosing. Furthermore, reductions were seen in serum HBV DNA for up to 6 weeks with weekly dosing. The advances demonstrated here, including persistence of in vivo activity, use of lower doses and reduced dosing frequency are important steps in making siRNA a clinically viable therapeutic approach.
Targeted silencing of disease-associated genes by synthetic short interfering RNA (siRNA) holds considerable promise as a novel therapeutic strategy. However, unmodified siRNA can be potent triggers of the innate immune response, particularly when associated with delivery vehicles that facilitate intracellular uptake. This represents a significant barrier to the therapeutic development of siRNA due to toxicity and off-target gene effects associated with this inflammatory response. Here we show that immune stimulation by synthetic siRNA can be completely abrogated by selective incorporation of 2'-O-methyl (2'OMe) uridine or guanosine nucleosides into one strand of the siRNA duplex. These noninflammatory siRNA, containing less than 20% modified nucleotides, can be readily generated without disrupting their gene-silencing activity. We show that, coupled with an effective systemic delivery vehicle, 2'OMe-modified siRNA targeting apolipoprotein B (apoB) can mediate potent silencing of its target mRNA, causing significant decreases in serum apoB and cholesterol. This is achieved at therapeutically viable siRNA doses without cytokine induction, toxicity, or off-target effects associated with the use of unmodified siRNA. This approach to siRNA design and delivery should prove widely applicable and represents an important step in advancing synthetic siRNA into a broad range of therapeutic areas.
Canonical small interfering RNA (siRNA) duplexes are potent activators of the mammalian innate immune system. The induction of innate immunity by siRNA is dependent on siRNA structure and sequence, method of delivery, and cell type. Synthetic siRNA in delivery vehicles that facilitate cellular uptake can induce high levels of inflammatory cytokines and interferons after systemic administration in mammals and in primary human blood cell cultures. This activation is predominantly mediated by immune cells, normally via a Toll-like receptor (TLR) pathway. The siRNA sequence dependency of these pathways varies with the type and location of the TLR involved. Alternatively nonimmune cell activation may also occur, typically resulting from siRNA interaction with cytoplasmic RNA sensors such as RIG1. As immune activation by siRNA-based drugs represents an undesirable side effect due to the considerable toxicities associated with excessive cytokine release in humans, understanding and abrogating this activity will be a critical component in the development of safe and effective therapeutics. This review describes the intracellular mechanisms of innate immune activation by siRNA, the design of appropriate sequences and chemical modification approaches, and suitable experimental methods for studying their effects, with a view toward reducing siRNA-mediated off-target effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.