Citation for published item:ioneroEq¡ omezD fF nd prosonD eFhF nd elyD hF nd qnnounD eF nd qr¤ okeD hFF nd qreenwellD rFgF nd furtonD uFF @PHITA 9ysmium uptkeD distriutionD nd IVUysGIVVys nd IVUeGIVVys ompositions in heophyee mrolgeD puus vesiulosus X implitions for determining the IVUysGIVVys omposition of sewterF9D qeohimi et gosmohimi etFD IWW F ppF RVESUF Further information on publisher's website:
Use policyThe full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that:• a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.Please consult the full DRO policy for further details.
Estuarine macroalgae elemental abundance controlled by a number of factors • Conservative and non-conservative mixing processes affect element enrichment. • Anthropogenic and geological inputs are observed. • Inorganic arsenic levels in macroalgae exceed American and Australian limits. • Levels of arsenic, iodine and others reduced in macroalgae when soaked and cooked.
Owing to Rhenium (Re) having no known biological role, it is not fully understood how Re is concentrated in oil kerogens. A commonly held assumption is that Re is incorporated into decomposing biomass under reducing conditions. However, living macroalgae also concentrate Re to several orders of magnitude greater than that of seawater. This study uses Fucus vesiculosus to assess Re uptake and its subsequent localization in the biomass. It is demonstrated that the Re abundance varies within the macroalgae and that Re is not located in one specific structure. In F. vesiculosus, the uptake and tolerance of Re was evaluated via tip cultures grown in seawater of different Re(VII) compound concentrations (0–7450 ng g−1). A positive correlation is shown between the concentration of Re-doped seawater and the abundance of Re accumulated in the tips. However, significant differences between Re(VII) compounds are observed. Although the specific cell structures where the Re is localized is not known, our findings suggest that Re is not held within chloroplasts or cytoplasmic proteins. In addition, metabolically inactivated F. vesiculosus does not accumulate Re, which indicates that Re uptake is via syn-life bioadsorption/bioaccumulation and that macroalgae may provide a source for Re phytomining and/or bioremediation.
Geochronology is essential for understanding Earth's history. The availability of precise and accurate isotopic data is increasing; hence it is crucial to develop transparent and accessible data reduction techniques and tools to transform raw mass spectrometry data into robust chronological data. Here we present a Monte Carlo sampling approach to fully propagate uncertainties from linear regressions for isochron dating. Our new approach makes no prior assumption about the causes of variability in the derived chronological results and propagates uncertainties from both experimental measurements (analytical uncertainties) and underlying assumptions (model uncertainties) into the final age determination.Using synthetic examples, we find that although the estimates of the slope and y-intercept (hence age and initial isotopic ratios) are comparable between the Monte Carlo method and the benchmark ''Isoplot" algorithm, uncertainties from the later could be underestimated by up to 60%, which are likely due to an incomplete propagation of model uncertainties. An additional advantage of the new method is its ability to integrate with geological information to yield refined chronological constraints. The new method presented here is specifically designed to fully propagate errors in geochronological applications involves linear regressions such as Rb-Sr,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.