How the fetal-placental arterial connection is made and positioned relative to the embryonic body axis, thereby ensuring efficient and directed blood flow to and from the mother during gestation, is not known. Here we use a combination of genetics, timed pharmacological inhibition in living mouse embryos, and three-dimensional modeling to link two novel architectural features that, at present, have no status in embryological atlases. The allantoic core domain (ACD) is the extraembryonic extension of the primitive streak into the allantois, or preumbilical tissue; the vessel of confluence (VOC), situated adjacent to the ACD, is an extraembryonic vessel that marks the site of fetal-placental arterial union. We show that genesis of the fetal-placental connection involves the ACD and VOC in a series of steps, each one dependent upon the last. In the first, Brachyury (T) ensures adequate extension of the primitive streak into the allantois, which in turn designates the allantoic-yolk sac junction. Next, the streak-derived ACD organizes allantoic angioblasts to the axial junction; upon signaling from Fibroblast Growth Factor Receptor-1 (FGFR1), these endothelialize and branch, forming a sprouting VOC that unites the umbilical and omphalomesenteric arteries with the fetal dorsal aortae. Arterial union is followed by the appearance of the medial umbilical roots within the VOC, which in turn designate the correct axial placement of the lateral umbilical roots/common iliac arteries. In addition, we show that the ACD and VOC are conserved across Placentalia, including humans, underscoring their fundamental importance in mammalian biology. We conclude that T is required for correct axial positioning of the VOC via the primitive streak/ACD, while FGFR1, through its role in endothelialization and branching, further patterns it. Together, these genetic, molecular and structural elements safeguard the fetus against adverse outcomes that can result from vascular mispatterning of the fetal-placental arterial connection.
Few directed searches have been undertaken to identify the genes involved in vertebrate lens formation. In the frog Xenopus, the larval cornea can undergo a process of transdifferentiation to form a new lens once the original lens is removed. Based on preliminary evidence, we have shown that this process shares many elements of a common molecular/genetic pathway to that involved in embryonic lens development. A subtracted cDNA library, enriched for genes expressed during cornea-lens transdifferentiation, was prepared. The similarities/identities of specific clones isolated from the subtracted cDNA library define an expression profile of cells undergoing cornea-lens transdifferentiation ("lens regeneration") and corneal wound healing (the latter representing a consequence of the surgery required to trigger transdifferentiation). Screens were undertaken to search for genes expressed during both transdifferentiation and embryonic lens development. Significantly, new genes were recovered that are also expressed during embryonic lens development. The expression of these genes, as well as others known to be expressed during embryonic development in Xenopus, can be correlated with different periods of embryonic lens induction and development, in an attempt to define these events in a molecular context. This information is considered in light of our current working model of embryonic lens induction, in which specific tissue properties and phases of induction have been previously defined in an experimental context. Expression data reveal the existence of further levels of complexity in this process and suggests that individual phases of lens induction and specific tissue properties are not strictly characterized or defined by expression of individual genes.
IntroductionDisagreement and conflict are inevitable among members of clinical teams, as well as with patients and families during the course of medical care. Despite the importance of physicians needing to negotiate and resolve conflicts, best practices for teaching these skills have not been established in a clinical setting.MethodsWe developed teaching tools based on a conflict resolution model from the business world, emphasizing team dynamics and employing a structured, hierarchical approach to conflict resolution that preserves interpersonal relationships. We employed lessons from diplomacy and improvisational theatre to underscore nonverbal cues that improve communication during conflict. We prepared instructions for teaching conflict management and conflict resolution styles, small-group negotiations, case-based clinical scenarios, personal reflection, and facilitated debrief. The tools are customizable based on audience and available instructional time.ResultsWe implemented this resource for over 2 years with 20 pediatric residents and over 150 educators and fellows at national meetings. Participants reported that the topic was timely and important and identified the conflict resolution hierarchy, attention to conflict resolution styles, use of case-based discussion, and focus on nonverbal communication as effective and valuable elements.DiscussionThis resource has been refined over five cycles of presentation and feedback with learners and educators. Our participants identified themes of conflicts in clinical settings that informed the case scenarios presented here, including interdisciplinary conflicts, ethical conflicts, and conflicts among members of the educational hierarchy. These tools are designed to meet established national educational priorities related to communication and professionalism across the educational continuum.
Mixl1 is thought to play important roles in formation of mesoderm and endoderm. Previously, Mixl1 expression was reported in the posterior primitive streak and allantois, but the precise spatiotemporal whereabouts of Mixl1 protein throughout gastrulation have not been elucidated. To localize Mixl1 protein, immunohistochemistry was carried out at 2-4 hour intervals on mouse gastrulae between primitive streak and 16-somite pair stages (~E6.5-9.5). Mixl1 localized to the entire primitive streak early in gastrulation. However, by headfold stages (~E7.75-8.0), Mixl1 diminished within the mid-streak but remained concentrated at either end of the streak, and localizing throughout midline posterior visceral endoderm. At the streak's anterior end, Mixl1 was confined to the posterior crown cells of Hensen's node, which contribute to dorsal hindgut endoderm and the posterior notochord. In the posterior streak, Mixl1 localized to the Allantoic Core Domain (ACD), which is the source of most of the allantois and contributes to the posterior embryonic-extraembryonic interface. In addition, Mix1 co-localized with the early hematopoietic marker, Runx1, in the allantois and visceral yolk sac blood islands. During hindgut invagination (4-16s, ~E8.5-9.5), Mixl1 localized to the hindgut lip, becoming concentrated within the midline anastomosis of the splanchnopleure, which appears to create the ventral component of the hindgut and omphalomesenteric artery. Surrounding the distal hindgut, Mixl1 identified midline cells within tailbud mesoderm. Mixl1 was also found in the posterior notochord. These findings provide a critical systematic, tissue-level understanding of embryonic Mixl1 localization, and support its role in regulation of crucial posterior axial mesendodermal stem cell niches during embryogenesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.