Even simple hybrid automata like the classic bouncing ball can exhibit Zeno behavior. The existence of this type of behavior has so far forced a large class of simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad-hoc restrictions to circumvent Zeno behavior or to abandon hybrid automata. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independent of the occurrence of a given event. Such an event can then even occur an unbounded number of times. This insight makes it possible to handle some types of Zeno behavior. If the post-Zeno state is defined explicitly in the given model of the hybrid automaton, the computed enclosure covers the corresponding trajectory that starts from the Zeno point through a restarted evolution. ©2015 The Authors. Published by Elsevier Ltd. A preliminary version of this paper was published in the proceedings of CPSNA 2013. This work was supported by the US National Science Foundation, awards NSF-CPS-1136099/1136104, the Swedish Knowledge Foundation (KK) and the Center for Research on Embedded Systems (CERES) grant number 20100314, and EPSRC grant number EP/C01037X/1.
Abstract. Developing Cyber-Physical Systems requires methods and tools to support simulation and verification of hybrid (both continuous and discrete) models. The Acumen modeling and simulation language is an open source testbed for exploring the design space of what rigorousbut-practical next-generation tools can deliver to developers of CyberPhysical Systems. Like verification tools, a design goal for Acumen is to provide rigorous results. Like simulation tools, it aims to be intuitive, practical, and scalable. However, it is far from evident whether these two goals can be achieved simultaneously. This paper explains the primary design goals for Acumen, the core challenges that must be addressed in order to achieve these goals, the "agile research method" taken by the project, the steps taken to realize these goals, the key lessons learned, and the emerging language design.
Hybrid systems-more precisely, their mathematical models-can exhibit behaviors, like Zeno behaviors, that are absent in purely discrete or purely continuous systems. First, we observe that, in this context, the usual definition of reachability-namely, the reflexive and transitive closure of a transition relation-can be unsafe, ie, it may compute a proper subset of the set of states reachable in finite time from a set of initial states. Therefore, we propose safe reachability, which always computes a superset of the set of reachable states.Second, in safety analysis of hybrid and continuous systems, it is important to ensure that a reachability analysis is also robust wrt small perturbations to the set of initial states and to the system itself, since discrepancies between a system and its mathematical models are unavoidable. We show that, under certain conditions, the best Scott continuous approximation of an analysis A is also its best robust approximation. Finally, we exemplify the gap between the set of reachable states and the supersets computed by safe reachability and its best robust approximation.
Even simple hybrid systems like the classic bouncing ball can exhibit Zeno behaviors. The existence of this type of behavior has so far forced simulators to either ignore some events or risk looping indefinitely. This in turn forces modelers to either insert ad hoc restrictions to circumvent Zeno behavior or to abandon hybrid modeling. To address this problem, we take a fresh look at event detection and localization. A key insight that emerges from this investigation is that an enclosure for a given time interval can be valid independently of the occurrence of a given event. Such an event can then even occur an unbounded number of times, thus making it possible to handle certain types of Zeno behavior.
Abstract-Rigorous simulation is a new technology that can play a key role in managing uncertainty in the design of safetycritical cyber-physical systems. One of its important applications is the analysis and evaluation of functional safety for road vehicles according to international standards such as ISO 26262. Previous work presented preliminary evidence to support the feasibility of using rigorous simulation for this purpose. Here we report on advances in our implementation of rigorous simulation and show how they enable the rigorous simulation of more refined and more complete models. A larger case study highlights the benefits of these advances and helps us identify new challenges that should be addressed by future work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.