We have determined the first de novo position of the secondary quinone Q B in the Rhodobacter sphaeroides reaction center (RC) using phases derived by the single wavelength anomalous dispersion method from crystals with selenomethionine substitution. We found that in frozen RC crystals, Q B occupies primarily the proximal binding site. In contrast, our room temperature structure showed that Q B is largely in the distal position. Both data sets were collected in dark-adapted conditions. We estimate that the occupancy of the Q B site is 80% with a proximal: distal ratio of 4:1 in frozen RC crystals. We could not separate the effect of freezing from the effect of the cryoprotectants ethylene glycol or glycerol. These results could have far-reaching implications in structure/function studies of electron transfer in the acceptor quinone complex because the above are the most commonly used cryoprotectants in spectroscopic experiments.
Efficient multiple- or single-wavelength anomalous dispersion (MAD/SAD) techniques that use tunable X-ray sources at third-generation synchrotrons exploit the anomalous scattering of certain heavy atoms for determination of experimental phases. Development of methods for the in vivo substitution of methionine by selenomethionine (SeMet) has revolutionized the process for determination of structures of soluble proteins in recent years. Herein, we report methods for biosynthetic incorporation of SeMet into induced intracytoplasmic membrane proteins of two species of the Rhodobacter genus of purple non-sulfur photosynthetic bacteria. Amino acid analysis of a membrane protein complex that was purified to homogeneity determined that the extent of SeMet incorporation was extensive and approached quantitative replacement. Diffraction-quality crystals were obtained from SeMet-labeled membrane proteins purified from 2 l of culture. These methods augment the potential utility of photosynthetic bacteria and their inducible membrane systems for the production of foreign membrane proteins for structure determination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.