Large birds regularly use updrafts to subsidize flight. Although most research on soaring bird flight has focused on use of thermal updrafts, there is evidence suggesting that many species are likely to use multiple modes of subsidy. We tested the degree to which a large soaring species uses multiple modes of subsidy to provide insights into the decision-making that underlies flight behaviour. We statistically classified more than 22 000 global positioning satellite-global system for mobile communications telemetry points collected at 30-s intervals to identify the type of subsidized flight used by 32 migrating golden eagles during spring in eastern North America. Eagles used subsidized flight on 87% of their journey. They spent 41.9% + 1.5 ( x + s:e:m:, range: 18-56%) of their subsidized northbound migration using thermal soaring, 45.2% + 2.1 (12-65%) of time gliding between thermals, and 12.9% + 2.2 (1-55%) of time using orographic updrafts. Golden eagles responded to the variable local-scale meteorological events they encountered by switching flight behaviour to take advantage of multiple modes of subsidy. Orographic soaring occurred more frequently in morning and evening, earlier in the migration season, and when crosswinds and tail winds were greatest. Switching between flight modes allowed migration for relatively longer periods each day and frequent switching behaviour has implications for a better understanding of avian flight behaviour and of the evolution of use of subsidy in flight.
To maximize fitness, flying animals should maximize flight speed while minimizing energetic expenditure. Soaring speeds of large-bodied birds are determined by flight routes and tradeoffs between minimizing time and energetic costs. Large raptors migrating in eastern North America predominantly glide between thermals that provide lift or soar along slopes or ridgelines using orographic lift (slope soaring). It is usually assumed that slope soaring is faster than thermal gliding because forward progress is constant compared to interrupted progress when birds pause to regain altitude in thermals. We tested this slope-soaring hypothesis using high-frequency GPS-GSM telemetry devices to track golden eagles during northbound migration. In contrast to expectations, flight speed was slower when slope soaring and eagles also were diverted from their migratory path, incurring possible energetic costs and reducing speed of progress towards a migratory endpoint. When gliding between thermals, eagles stayed on track and fast gliding speeds compensated for lack of progress during thermal soaring. When thermals were not available, eagles minimized migration time, not energy, by choosing energetically expensive slope soaring instead of waiting for thermals to develop. Sites suited to slope soaring include ridges preferred for wind-energy generation, thus avian risk of collision with wind turbines is associated with evolutionary trade-offs required to maximize fitness of time-minimizing migratory raptors.
Migration is costly in terms of time, energy and safety. Optimal migration theory suggests that individual migratory birds will choose between these three costs depending on their motivation and available resources. To test hypotheses about use of migratory strategies by large soaring birds, we used GPS telemetry to track 18 adult, 13 sub-adult and 15 juvenile Golden Eagles Aquila chrysaetos in eastern North America. Each age-class had potentially different motivations during migration. During spring, the migratory performance (defined here as the directness of migratory flight) of adults was higher than that of any other ageclasses. Adults also departed earlier and spent less time migrating. Together, these patterns suggest that adults were primarily time-limited and the other two age-classes were energylimited. However, adults that migrated the longest distances during spring also appeared to take advantage of energy-conservation strategies such as decreasing their compensation for wind drift. During autumn, birds of all age-classes were primarily energy-minimizers; they increased the length of stopovers, flew less direct routes and migrated at a slower pace than during spring. Nonetheless, birds that departed later in autumn flew more directly, indicating that time limitations may have affected their decision-making. During both seasons, juveniles had the lowest performance, sub-adults intermediate performance and adults the highest performance. Our results show age-and seasonal variation in time and energy-minimization strategies that are not necessarily exclusive of one another. Beyond time and energy, a complex suite of factors, including weather, experience and navigation ability, influences migratory performance and decision-making.
Summary1. Animals respond to a variety of environmental cues, including weather conditions, when migrating. Understanding the relationship between weather and migration behaviour is vital to assessing time-and energy limitations of soaring birds. Different soaring modes have different efficiencies, are dependent upon different types of subsidized lift and are weather dependent. 2. We collected GPS locations from 47 known-age golden eagles that moved along 83 migration tracks. We paired each location with weather to determine meteorological correlates of migration during spring and fall as birds crossed three distinct ecoregions in north-east North America. 3. Golden eagle migration was associated with weather conditions that promoted thermal development, regardless of season, ecoregion or age. Eagle migration showed age-and seasonspecific responses to weather conditions that promoted orographic lift. 4. In spring, adult eagles migrated earlier, over fewer days, and under more variable weather conditions than did pre-adults, suggesting that adults were time limited and pre-adults made choices to conserve energy. In fall, we found no difference in the time span of migration or when each age class migrates; however, we saw evidence that pre-adults were less efficient migrants than adults. 5. The decision by soaring birds to migrate when thermals developed allowed individuals to manage trade-offs between migratory speed and migratory efficiency. When time was limited (i.e. spring movement of adults speeding towards nesting territories), use of whatever lift was available decreased the time span of migration. When migration was not time limited (e.g. spring movements by pre-adults, all movements in fall), eagles avoided suboptimal flight conditions by pausing migration, thus increasing the time span of migration while reducing energetic costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.