BACKGROUND Diffuse low-grade and intermediate-grade gliomas (which together make up the lower-grade gliomas, World Health Organization grades II and III) have highly variable clinical behavior that is not adequately predicted on the basis of histologic class. Some are indolent; others quickly progress to glioblastoma. The uncertainty is compounded by interobserver variability in histologic diagnosis. Mutations in IDH, TP53, and ATRX and codeletion of chromosome arms 1p and 19q (1p/19q codeletion) have been implicated as clinically relevant markers of lower-grade gliomas. METHODS We performed genomewide analyses of 293 lower-grade gliomas from adults, incorporating exome sequence, DNA copy number, DNA methylation, messenger RNA expression, microRNA expression, and targeted protein expression. These data were integrated and tested for correlation with clinical outcomes. RESULTS Unsupervised clustering of mutations and data from RNA, DNA-copy-number, and DNA-methylation platforms uncovered concordant classification of three robust, nonoverlapping, prognostically significant subtypes of lower-grade glioma that were captured more accurately by IDH, 1p/19q, and TP53 status than by histologic class. Patients who had lower-grade gliomas with an IDH mutation and 1p/19q codeletion had the most favorable clinical outcomes. Their gliomas harbored mutations in CIC, FUBP1, NOTCH1, and the TERT promoter. Nearly all lower-grade gliomas with IDH mutations and no 1p/19q codeletion had mutations in TP53 (94%) and ATRX inactivation (86%). The large majority of lower-grade gliomas without an IDH mutation had genomic aberrations and clinical behavior strikingly similar to those found in primary glioblastoma. CONCLUSIONS The integration of genomewide data from multiple platforms delineated three molecular classes of lower-grade gliomas that were more concordant with IDH, 1p/19q, and TP53 status than with histologic class. Lower-grade gliomas with an IDH mutation either had 1p/19q codeletion or carried a TP53 mutation. Most lower-grade gliomas without an IDH mutation were molecularly and clinically similar to glioblastoma. (Funded by the National Institutes of Health.)
Background and Purpose-Different definitions have been proposed to define the ischemic penumbra from perfusion-CT (PCT) data, based on parameters and thresholds tested only in small pilot studies. The purpose of this study was to perform a systematic evaluation of all PCT parameters (cerebral blood flow, volume [CBV], mean transit time [MTT], time-to-peak) in a large series of acute stroke patients, to determine which (combination of) parameters most accurately predicts infarct and penumbra. Methods-One hundred and thirty patients with symptoms suggesting hemispheric stroke Յ12 hours from onset were enrolled in a prospective multicenter trial. They all underwent admission PCT and follow-up diffusion-weighted imaging/fluid-attenuated inversion recovery (DWI/FLAIR); 25 patients also underwent admission DWI/FLAIR. PCT maps were assessed for absolute and relative reduced CBV, reduced cerebral blood flow, increased MTT, and increased time-to-peak. Receiver-operating characteristic curve analysis was performed to determine the most accurate PCT parameter, and the optimal threshold for each parameter, using DWI/FLAIR as the gold standard. Results-The PCT parameter that most accurately describes the tissue at risk of infarction in case of persistent arterial occlusion is the relative MTT (area under the curveϭ0.962), with an optimal threshold of 145%. The PCT parameter that most accurately describes the infarct core on admission is the absolute CBV (area under the curveϭ0.927), with an optimal threshold at 2.0 mlϫ100 g
Purpose:To conduct a comprehensive analysis of radiologist-made assessments of glioblastoma (GBM) tumor size and composition by using a community-developed controlled terminology of magnetic resonance (MR) imaging visual features as they relate to genetic alterations, gene expression class, and patient survival. Materials and Methods:Because all study patients had been previously deidentified by the Cancer Genome Atlas (TCGA), a publicly available data set that contains no linkage to patient identifiers and that is HIPAA compliant, no institutional review board approval was required. Presurgical MR images of 75 patients with GBM with genetic data in the TCGA portal were rated by three neuroradiologists for size, location, and tumor morphology by using a standardized feature set. Interrater agreements were analyzed by using the Krippendorff a statistic and intraclass correlation coefficient. Associations between survival, tumor size, and morphology were determined by using multivariate Cox regression models; associations between imaging features and genomics were studied by using the Fisher exact test. Results:Interrater analysis showed significant agreement in terms of contrast material enhancement, nonenhancement, necrosis, edema, and size variables. Contrast-enhanced tumor volume and longest axis length of tumor were strongly associated with poor survival (respectively, hazard ratio: 8.84, P = .0253, and hazard ratio: 1.02, P = .00973), even after adjusting for Karnofsky performance score (P = .0208). Proneural class GBM had significantly lower levels of contrast enhancement (P = .02) than other subtypes, while mesenchymal GBM showed lower levels of nonenhanced tumor (P , .01). Conclusion:This analysis demonstrates a method for consistent image feature annotation capable of reproducibly characterizing brain tumors; this study shows that radiologists' estimations of macroscopic imaging features can be combined with genetic alterations and gene expression subtypes to provide deeper insight to the underlying biologic properties of GBM subsets.q RSNA, 2013
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.