Long-chain fatty acid uptake, which provides a large part of myocardial energy, is impaired in human and murine hearts deficient in the membrane fatty acid translocase, FAT͞CD36. We examined myocardial function in CD36-null mice using the working heart. Fatty acid oxidation and stores of glycogen, triglycerides, and ATP were reduced in CD36-deficient hearts and were restored to WT levels by rescue of myocyte CD36. Under normal perfusion conditions, CD36-null hearts had similar cardiac outputs and end-diastolic pressures as WT or transgenic hearts. After 6 min of ischemia, cardiac output decreased by 41% and end diastolic pressure tripled for CD36-null hearts, with no significant changes in WT or transgenic hearts. Null hearts also failed more frequently after ischemia as compared with WT or transgenics. To dissect out contribution of fatty acid uptake, a perfusate-lacking fatty acids was used. This decreased cardiac output after ischemia by 30% in WT hearts as compared with 50% for CD36-deficient hearts. End diastolic pressure, a negative index of myocardial performance, increased after ischemia in all heart types. Addition to the perfusate of a medium-chain fatty acid (caprylic acid) that does not require CD36 for uptake alleviated poor ischemic tolerance of CD36-null hearts. In summary, recovery from ischemia is compromised in CD36-deficient hearts and can be restored by CD36 rescue or by supplying medium-chain fatty acids. It would be important to determine whether the findings apply to the human situation where polymorphisms of the CD36 gene are relatively common.CD36 rescue ͉ working heart ͉ fatty acid oxidation F atty acid (FA) uptake consists of two components, passive diffusion and carrier-mediated transport specific for FA with Ͼ8-10 carbons (1). An 88-kDa glycoprotein, FAT (2), a homolog of human CD36 (3, 4) was implicated in FA transport by labeling with the transport inhibitor sulfo-N-succinimidyl oleate (1, 5). The role of FAT͞CD36 in FA uptake was confirmed by studies of mice with CD36 deficiency or overexpression (6, 7). CD36 is abundant in the heart (2, 8), and its deficiency is associated with a 60-80% decrease in myocardial FA uptake (9, 10) and with a severalfold compensatory increase in glucose utilization (11).There is strong evidence for a critical role of CD36-facilitated FA uptake during muscle contraction, which was shown to recruit the protein to the plasma membrane (12). Muscle-targeted overexpression of CD36 enhanced FA oxidation in response to contraction severalfold (7). In line with this, CD36-null mice (6) perform poorly on treadmill and swimming tests (A.I., unpublished observations). However the impact of CD36 deficiency on the performance of the heart, which relies on FA for energy, remains unknown. Such information may have clinical relevance because incidence of CD36 deficiency in humans ranges between 0.3% and 18.5% depending on the population (13). CD36-deficient humans have a defect in myocardial FA uptake (14, 15) that is similar in magnitude to that observed in the CD36-...
Regenerative medicine approaches for the treatment of damaged or missing myocardial tissue include cell-based therapies, scaffold-based therapies, and/or the use of specific growth factors and cytokines. The present study evaluated the ability of extracellular matrix (ECM) derived from porcine urinary bladder to serve as an inductive scaffold for myocardial repair. ECM scaffolds have been shown to support constructive remodeling of other tissue types including the lower urinary tract, the dermis, the esophagus, and dura mater by mechanisms that include the recruitment of bone marrow-derived progenitor cells, angiogenesis, and the generation of bioactive molecules that result from degradation of the ECM. ECM derived from the urinary bladder matrix, identified as UBM, was configured as a single layer sheet and used as a biologic scaffold for a surgically created 2 cm2 full-thickness defect in the right ventricular free wall. Sixteen dogs were divided into two equal groups of eight each. The defect in one group was repaired with a UBM scaffold and the defect in the second group was repaired with a Dacron patch. Each group was divided into two equal subgroups (n = 4), one of which was sacrificed 15 min after surgical repair and the other of which was sacrificed after 8 weeks. Global right ventricular contractility was similar in all four subgroups groups at the time of sacrifice. However, 8 weeks after implantation the UBM-treated defect area showed significantly greater (p < 0.05) regional systolic contraction compared to the myocardial defects repaired with by Dacron (3.3 +/- 1.3% vs. -1.8 +/- 1.1%; respectively). Unlike the Dacron-repaired region, the UBM-repaired region showed an increase in systolic contraction over the 8-week implantation period (-4.2 +/- 1.7% at the time of implantation vs. 3.3 +/- 1.3% at 8 weeks). Histological analysis showed the expected fibrotic reaction surrounding the embedded Dacron material with no evidence for myocardial regeneration. Histologic examination of the UBM scaffold site showed cardiomyocytes accounting for approximately 30% of the remodeled tissue. The cardiomyocytes were arranged in an apparently randomly dispersed pattern throughout the entire tissue specimen and stained positive for alpha- sarcomeric actinin and Connexin 43. The thickness of the UBM graft site increased greatly from the time of implantation to the 8-week sacrifice time point when it was approximately the thickness of the normal right ventricular wall. Histologic examination suggested complete degradation of the originally implanted ECM scaffold and replacement by host tissues. We conclude that UBM facilitates a constructive remodeling of myocardial tissue when used as replacement scaffold for excisional defects.
Flecainide slows conduction in both the longitudinal and transverse direction relative to the orientation of the myocardial fibers. This enables sustained reentry to occur more easily. Flecainide does not cause conduction block in crucial regions of reentrant circuits (central common pathway) and therefore does not prevent reentrant tachycardia in healing infarcts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.