For the modelling of count data, aggregation of the raw data over certain subgroups or predictor configurations is common practice. This is, for instance, the case for count data biomarkers of radiation exposure. Under the Poisson law, count data can be aggregated without loss of information on the Poisson parameter, which remains true if the Poisson assumption is relaxed towards quasi-Poisson. However, in biodosimetry in particular, but also beyond, the question of how the dispersion estimates for quasi-Poisson models behave under data aggregation have received little attention. Indeed, for real data sets featuring unexplained heterogeneities, dispersion estimates can increase strongly after aggregation, an effect which we will demonstrate and quantify explicitly for some scenarios. The increase in dispersion estimates implies an inflation of the parameter standard errors, which, however, by comparison with random effect models, can be shown to serve a corrective purpose. The phenomena are illustrated by γ-H2AX foci data as used for instance in radiation biodosimetry for the calibration of dose-response curves.
If individuals are exposed to ionising radiation, due to some radiation accident, for medical reasons, or during spaceflight, there is often a need to estimate the contracted radiation dose. The field of biodosimetry is concerned with estimating the dose retrospectively, based on certain biomarkers, which are typically based on counts of some cytogenetic or biomolecular features of the cell arising after radiation-induced double-strand-breaks. Such techniques face particular challenges when the exposure is only partial rather than whole-body, which, when unaccounted for, may lead to grossly inaccurate dose estimates. For biomarkers which are overdispersed, there are currently no procedures available for the detection of partial-body exposures. We consider the question of estimating the exposure fraction as well as quantifying its uncertainty, using Bayesian and frequentist methods, by means of simulation scenarios which are motivated by foci count data as arising for the γ−H2AX protein biomarker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.