Nitrogen dioxide (NO2) is a gas species that plays an important role in certain industrial, farming, and healthcare sectors. However, there are still significant challenges for NO2 sensing at low detection limits, especially in the presence of other interfering gases. The NO2 selectivity of current gas-sensing technologies is significantly traded-off with their sensitivity and reversibility as well as fabrication and operating costs. In this work, we present an important progress for selective and reversible NO2 sensing by demonstrating an economical sensing platform based on the charge transfer between physisorbed NO2 gas molecules and two-dimensional (2D) tin disulfide (SnS2) flakes at low operating temperatures. The device shows high sensitivity and superior selectivity to NO2 at operating temperatures of less than 160 °C, which are well below those of chemisorptive and ion conductive NO2 sensors with much poorer selectivity. At the same time, excellent reversibility of the sensor is demonstrated, which has rarely been observed in other 2D material counterparts. Such impressive features originate from the planar morphology of 2D SnS2 as well as unique physical affinity and favorable electronic band positions of this material that facilitate the NO2 physisorption and charge transfer at parts per billion levels. The 2D SnS2-based sensor provides a real solution for low-cost and selective NO2 gas sensing.
Two-dimensional (2D) transition metal dichalcogenide semiconductors offer unique electronic and optical properties, which are significantly different from their bulk counterparts. It is known that the electronic structure of 2D MoS2, which is the most popular member of the family, depends on the number of layers. Its electronic structure alters dramatically at near atomically thin morphologies, producing strong photoluminescence (PL). Developing processes for controlling the 2D MoS2 PL is essential to efficiently harness many of its optical capabilities. So far, it has been shown that this PL can be electrically or mechanically gated. Here, we introduce an electrochemical approach to actively control the PL of liquid-phase-exfoliated 2D MoS2 nanoflakes by manipulating the amount of intercalated ions including Li(+), Na(+), and K(+) into and out of the 2D crystal structure. These ions are selected as they are crucial components in many bioprocesses. We show that this controlled intercalation allows for large PL modulations. The introduced electrochemically controlled PL will find significant applications in future chemical and bio-optical sensors as well as optical modulators/switches.
Quasi-two-dimensional (quasi-2D) molybdenum disulfide (MoS2) is a photoluminescence (PL) material with unique properties. The recent demonstration of its PL, controlled by the intercalation of positive ions, can lead to many opportunities for employing this quasi-2D material in ion-related biological applications. Here, we present two representative models of biological systems that incorporate the ion-controlled PL of quasi-2D MoS2 nanoflakes. The ion exchange behaviors of these two models are investigated to reveal enzymatic activities and cell viabilities. While the ion intercalation of MoS2 in enzymatic activities is enabled via an external applied voltage, the intercalation of ions in cell viability investigations occurs in the presence of the intrinsic cell membrane potential.
Ingestible sensors are potentially a powerful tool for monitoring human health. Sensors have been developed that can, for example, provide pH and pressure readings or monitor medication, but capsules that can provide key information about the chemical composition of the gut are still not available. Here we report a human pilot trial of an ingestible electronic capsule that can sense oxygen, hydrogen, and carbon dioxide. The capsule uses a combination of thermal conductivity and semiconducting sensors, and their selectivity and sensitivity to different gases is controlled by adjusting the heating elements of the sensors. Gas profiles of the subjects were obtained while modulating gut microbial fermentative activities by altering their intake of dietary fibre. Ultrasound imaging confirmed that the oxygen-equivalent concentration profile could be used as an accurate marker for the location of the capsule. In a crossover study, variations of fibre intake were found to be associated with differing small intestinal and colonic transit times, and gut fermentation. Regional fermentation patterns could be defined via hydrogen gas profiles. Our gas capsule offers an accurate and safe tool for monitoring the effects of diet of individuals, and has the potential to be used as a diagnostic tool for the gut. NATuRE ELECTRONiCS
The electronic properties of thiol-functionalized 2D MoS2 nanosheets are investigated. Shifts in the valence and conduction bands and Fermi levels are observed while bandgaps remain unaffected. These findings allow the tuning of energy barriers between 2D MoS2 and other materials, which can lead to improved control over 2D MoS2 -based electronic and optical devices and catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.