Quantum dot sensitized solar cells (QDSSC) may benefit from the ability to tune the quantum dot optical properties and band gap through the manipulation of their size and composition. Moreover, the inorganic nanocrystals may provide increased stability compared to organic sensitizers. We report the facile fabrication of QDSSC by electrophoretic deposition of CdSe QDs onto conducting electrodes coated with mesoporous TiO(2). Unlike prior chemical linker-based methods, no pretreatment of the TiO(2) was needed, and deposition times as short as 2 h were sufficient for effective coating. Cross-sectional chemical analysis shows that the Cd content is nearly constant across the entire TiO(2) layer. The dependence of the deposition on size was studied and successfully applied to CdSe dots with diameters between 2.5 and 5.5 nm as well as larger CdSe quantum rods. The photovoltaic characteristics of the devices are greatly improved compared with those achieved for cells prepared with a linker approach, reaching efficiencies as high as 1.7%, under 1 sun illumination conditions, after treating the coated electrodes with ZnS. Notably, the absorbed photon to electron conversion efficiencies did not show a clear size-dependence indicating efficient electron injection even for the larger QD sizes. The electrophoretic deposition method can be easily expanded and applied for preparations of QDSSCs using diverse colloidal quantum dot and quantum rod materials for sensitization.
Semiconductor heterostructured seeded nanorods exhibit intense polarized emission, and the degree of polarization is determined by their morphology and dimensions. Combined optical and atomic force microscopy were utilized to directly correlate the emission polarization and the orientation of single seeded nanorods. For both the CdSe/CdS sphere-in-rod (S@R) and rod-in-rod (R@R), the emission was found to be polarized along the nanorod's main axis. Statistical analysis for hundreds of single nanorods shows higher degree of polarization, p, for R@R (p = 0.83), in comparison to S@R (p = 0.75). These results are in good agreement with the values inferred by ensemble photoselection anisotropy measurements in solution, establishing its validity for nanorod samples. On this basis, photoselection photoluminescence excitation anisotropy measurements were carried out providing unique information concerning the symmetry of higher excitonic transitions and allowing for a better distinction between the dielectric and the quantum-mechanical contributions to polarization in nanorods.
CuInS2 nanocrystals with the wurtzite structure show promise for applications requiring efficient energy transport due to their anisotropic crystal structure. We investigate the source of photoluminescence in the near-infrared spectral region recently observed from these nanocrystals. Spectroscopic studies of both wurtzite CuInS2 itself and samples alloyed with Cd or Zn allow the assignment of this emission to a radiative point defect within the nanocrystal structure. Further, by varying the organic passivation layer on the material, we are able to determine that the atomic species responsible for nonradiative decay paths on the nanocrystal surface are Cu- or S-based. Density functional theory calculations of defect states within the material allow identification of the likely radiative species. Understanding both the electronic structure and optical properties of wurtzite CuInS2 nanocrystals is necessary for their efficient integration into potential biological, photovoltaic, and photocatalytic applications.
The doping of colloidal semiconductor nanocrystals (NCs) presents an additional knob beyond size and shape for controlling the electronic properties. An important problem for doping with aliovalent elements is associated with resolving the location of the dopant and its structural surrounding within small NCs, an issue directly connected with self-purification. Here we used a postsynthesis diffusion-based doping method for introducing Cu impurities into InAs quantum dots. X-ray absorption fine structure (XAFS) spectroscopy experiments along with first-principle density functional theory (DFT) calculations were used to probe the impurity sites. The concentration dependence was investigated for a wide range of doping levels, helping to derive a selfconsistent picture where the Cu impurity occupies an interstitial site within the InAs lattice. Moreover, at extremely high doping levels, Cu−Cu interactions are identified in the XAFS data. This structural model is supported by X-ray diffraction data, along with the DFT calculation. These findings establish the reproducibility of the diffusion-based doping strategy giving rise to new opportunities of correlating the structural details with emerging electronic properties in heavily doped NCs.
Phone: þ972 2 6584515, Fax: þ972 2 6584148Large-scale lateral alignment of nanorods (NRs) is of interest for manifestation of their anistropic properties including polarized emission and directional electrical transport. This study investigates the utility of mechanical rubbing for macroscopic scale alignment of colloidal semiconductor NRs. CdSe/CdS seeded-rods, exhibiting linearly polarized emission, are aligned by mechanical rubbing of a spin-coated glass substrate. The dragging force exerted by the rubbing fibers results in deflection and reorientation of the NRs along the rubbing direction. The rubbed samples were characterized by various methods including absorption, polarized emission, optical fluorescence microscopy, atomic force microscopy, and ultra-high resolution scanning electron microscopy. The emission polarization contrast ratio (CR), defined as the ratio between emission intensities parallel and perpendicular to the rubbing direction, was used to characterize the rods alignment.The effects of substrate treatments on the CR were studied, showing that partially hydrophobic surface provides optimal conditions for alignment. Excess organic ligands added to the deposited NR solution strongly affect the extent of alignment. This was studied for a series of NR samples of different dimensions and an optimal additive ratio of $3 ligand molecules per 1 nm 2 NR surface area was found to yield the highest CR. Average CR values of 3.5 were detected over the entire 6 cm 2 substrate area, with local values exceeding 4.5. While samples of rubbed spherical quantum dots and spincoated films of NRs show no emission polarization, the emission intensity from rubbed NR samples is polarized obeying Malus' law (wherein, the intensity is proportional to cos 2 (u)). Mechanical rubbing, well known for its use in LC devices, may be considered as a method for large-scale alignment of NRs on substrates.1 Introduction Semiconductor nanocrystals (NCs) manifest unique, size-dependent, electronic, and optical properties [1,2]. Advancements in the synthesis of these colloidal NCs yielded high quantum efficiencies [3] and control of the attained morphology [4,5]. Of particular interest are elongated semiconductor NCs, known as nanorods (NRs), exhibiting anisotropic properties such as polarized emission and lasing [6][7][8][9][10][11][12]. Alignment of NRs on large scales by facile means is therefore of fundamental interest for the study of their anisotropic collective behavior and is also relevant for different optoelectronic applications of NRs. In this work, we examined the use of mechanical rubbing to induce NR alignment on large macroscopic scale areas. Effects of rubbing parameters, the substrate surface functionalization and excess organic ligands on the rubbing process, and the resulting alignment were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.