<p>The paper introduces a methodology to define production trend classes and also the results to serve with trend prognosis in a given manufacturing situation. The prognosis is valid for one, selected production measure (e.g. a quality dimension of one product, like diameters, angles, surface roughness, pressure, basis position, etc.) but the applied model takes into account the past values of many other, related production data collected typically on the shop-floor, too. Consequently, it is useful in batch or (customized) mass production environments. The proposed solution is applicable to realize production control inside the tolerance limits to proactively avoid the production process going outside from the given upper and lower tolerance limits.</p><p>The solution was developed and validated on real data collected on the shop-floor; the paper also summarizes the validated application results of the proposed methodology.</p>
Dyadic and small group collaboration is an evolutionary advantageous behaviour and the need for such collaboration is a regular occurrence in day to day life. In this paper we estimate the perceived personality traits of individuals in dyadic and small groups over thin-slices of interaction on four multimodal datasets. We find that our transformer based predictive model performs similarly to human annotators tasked with predicting the perceived big-five personality traits of participants. Using this model we analyse the estimated perceived personality traits of individuals performing tasks in small groups and dyads. Permutation analysis shows that in the case of small groups undergoing collaborative tasks, the perceived personality of group members clusters, this is also observed for dyads in a collaborative problem solving task, but not in dyads under non-collaborative task settings. Additionally, we find that the group level average perceived personality traits provide a better predictor of group performance than the group level average self-reported personality traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.