Starting from the radiative transport equation we derive the scaling relationships that enable a single Monte Carlo (MC) simulation to predict the spatially- and temporally-resolved reflectance from homogeneous semi-infinite media with arbitrary scattering and absorption coefficients. This derivation shows that a rigorous application of this single Monte Carlo (sMC) approach requires the rescaling to be done individually for each photon biography. We examine the accuracy of the sMC method when processing simulations on an individual photon basis and also demonstrate the use of adaptive binning and interpolation using non-uniform rational B-splines (NURBS) to achieve order of magnitude reductions in the relative error as compared to the use of uniform binning and linear interpolation. This improved implementation for sMC simulation serves as a fast and accurate solver to address both forward and inverse problems and is available for use at http://www.virtualphotonics.org/.
We present an approach to solving the radiative transport equation (RTE) for layered media in the spatial frequency domain (SFD) using Monte Carlo (MC) simulations. This is done by obtaining a complex photon weight from analysis of the Fourier transform of the RTE. We also develop a modified shortcut method that enables a single MC simulation to efficiently provide RTE solutions in the SFD for any number of spatial frequencies. We provide comparisons between the modified shortcut method and conventional discrete transform methods for SFD reflectance. Further results for oblique illumination illustrate the potential diagnostic utility of the SFD phase-shifts for analysis of layered media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.