Intermediate linear booster drive can solve many problems of transport by long route conveyors. At the same time, operating costs are significantly reduced. There are solutions using intermediate belt drives, usually involving friction coupling in the carry belt. From a theoretical point of view, it is possible to transmit the friction force on an additional section in the return belt. The article presents a theoretical and experimental analysis of this solution and a comparison with a drive operating in a conventional solution. The transferred forces, the variability of the belt tension as well as the efficiency and stability of the drive for both solutions were compared. The use of additional coupling in the return belt makes it possible to increase the transmitted friction force and achieve a better rate of electricity consumption. The solution can be useful in currently existing intermediate drives, where it is possible to support the return side and transmit power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.