In an environment subjected to continuous climatic evolution, the study of the long-term behavior of building materials subject to environmental aggressions becomes an extremely important factor in evaluating the sustainability of these materials over time. The damage due to the aggression of external agents does not only affect the surface of the building but can cause a loss of performance in the mechanical qualities of the material with the worsening of the safety conditions of the entire structure. The velocity of the damage evolution is an interesting item. Here the variation velocity of some parameters characterizing the porous materials subjected to aggressive actions is dealt with. Starting from standard material characterization tests, extending the test times, the rate of variation of the mass and the deformation induced by the absorption of saline solutions in the porous medium and the variation of these speeds over time were evaluated. Hypotheses are formulated on the influence that this speed on the degradation of the material in the short and long time. The results obtained show how long-term aggressive action can cause internal damage with a consequent critical increase in absorption, mass and deformation, phenomena that can induce even severe damage to structural elements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.