In this paper, we report on the development of a bench-stable borane for frustrated Lewis pair catalyzed reduction of aldehydes, ketones and enones. The deliberate for finetuning of structural and electronic parameters of Lewis acid component and the choice of Lewis base provided for the first time, a moisture tolerant FLP catalyst. Related NMR and DFT studies underpinned the unique behavior of this FLP catalyst and gave insight into the catalytic activity of the resulting FLP catalyst.
Herein we report that a single frustrated Lewis pair (FLP) catalyst can promote the reductive etherification of aldehydes and ketones. The reaction does not require an exogenous acid catalyst, but the combined action of FLP on H , R-OH or H O generates the required Brønsted acid in a reversible, "turn on" manner. The method is not only a complementary metal-free reductive etherification, but also a niche procedure for ethers that would be either synthetically inconvenient or even intractable to access by alternative synthetic protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.