The Yes-associated protein (YAP) is a core effector of the Hippo pathway, which regulates proliferation and apoptosis in organ development. YAP function has been extensively characterized in epithelial cells and tissues, but its function in adult skeletal muscle remains poorly defined. Here we show that YAP positively regulates basal skeletal muscle mass and protein synthesis. Mechanistically, we show that YAP regulates muscle mass via interaction with TEAD transcription factors. Furthermore, YAP abundance and activity in muscles is increased following injury or degeneration of motor nerves, as a process to mitigate neurogenic muscle atrophy. Our findings highlight an essential role for YAP as a positive regulator of skeletal muscle size. Further investigation of interventions that promote YAP activity in skeletal muscle might aid the development of therapeutics to combat muscle wasting and neuromuscular disorders.
Significance
Myostatin, via activation of the Smad2/3 pathway, has long been recognized as the body’s major negative regulator of skeletal muscle mass. In this study, however, we demonstrate that other TGF-β proteins, particularly activin A and activin B, act in concert with myostatin to repress muscle growth. Preventing activin and myostatin signaling in the tibialis anterior muscles of mice resulted in massive hypertrophy (>150%), which was dependent upon both the complete inhibition of the Smad2/3 pathway and activation of the parallel bone morphogenetic protein (BMP)/Smad1/5 axis. Using this approach in models of muscular dystrophy and cancer cachexia increased muscle mass or prevented muscle wasting, respectively, highlighting the potential therapeutic advantages of complete inhibition of Smad2/3 ligand activity in skeletal muscle.
Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.