Variations of eclipse arrival times have recently been detected in several post-common envelope binaries consisting of a white dwarf and a main-sequence companion star. The generally favored explanation for these timing variations is the gravitational pull of one or more circumbinary substellar objects periodically moving the center of mass of the host binary. Using the new extreme-AO instrument SPHERE, we image the prototype eclipsing post-common envelope binary V471 Tau in search of the brown dwarf that is believed to be responsible for variations in its eclipse arrival times. We report that an unprecedented contrast of D = m 12.1 H at a separation of 260 mas was achieved, but resulted in a non-detection. This implies that there is no brown dwarf present in the system unless it is 3 mag fainter than predicted by evolutionary track models, and provides damaging evidence against the circumbinary interpretation of eclipse timing variations. In the case of V471 Tau, a more consistent explanation is offered with the Applegate mechanism, in which these variations are prescribed to changes in the quadrupole moment within the main-sequence star.
Context. The evolution of a circumstellar disk from its gas-rich protoplanetary stage to its gas-poor debris stage is not understood well. It is apparent that disk clearing progresses from the inside-out on a short time scale and models of photoevaporation are frequently used to explain this. However, the photoevaporation rates predicted by recent models differ by up to two orders of magnitude, resulting in uncertain time scales for the final stages of disk clearing. Aims. Photoevaporation theories predict that the final stages of disk-clearing progress in objects that have ceased accretion but still posses considerable material at radii far from the star. Weak-line T Tauri stars (WTTS) with infrared emission in excess of what is expected from the stellar photosphere are likely in this configuration. We aim to provide observational constraints on theories of disk-clearing by measuring the dust masses and CO content of a sample of young (1.8−26.3 Myr) WTTS. Methods. We used ALMA Band 6 to obtain continuum and 12 CO(2−1) line fluxes for a sample of 24 WTTS stars with known infrared excess. For these WTTS, we inferred the dust mass from the continuum observations and derived disk luminosities and ages to allow comparison with previously detected WTTS. Results. We detect continuum emission in only four of 24 WTTS, and no 12 CO(2−1) emission in any of them. For those WTTS where no continuum was detected, their ages and derived upper limits suggest they are debris disks, which makes them some of the youngest debris disks known. Of those where continuum was detected, three are possible photoevaporating disks, although the lack of CO detection suggests a severely reduced gas-to-dust ratio. Conclusions. The low fraction of continuum detections implies that, once accretion onto the star stops, the clearing of the majority of dust progresses very rapidly. Most WTTS with infrared excess are likely not in transition but are instead young debris disks, whose dust is either primordial and has survived disk-clearing, or is of second-generation origin. In the latter case, the presence of giant planets within these WTTS might be the cause.
A central hypothesis in the theory of cataclysmic variable (CV) evolution is the need to explain the observed lack of accreting systems in the 2-3 h orbital period range, known as the period gap. The standard model, disrupted magnetic braking (DMB), reproduces the gap by postulating that CVs transform into inconspicuous detached white dwarf (WD) plus main sequence systems, which no longer resemble CVs. However, observational evidence for this standard model is currently indirect and thus this scenario has attracted some criticism throughout the last decades. Here, we perform a simple but exceptionally strong test of the existence of detached CVs (dCVs). If the theory is correct, dCVs should produce a peak in the orbital period distribution of detached close binaries consisting of a WD and an M4-M6 secondary star. We measured six new periods which brings the sample of such binaries with known periods below 10 h to 52 systems. An increase of systems in the 2-3 h orbital period range is observed. Comparing this result with binary population models, we find that the observed peak cannot be reproduced by post-common envelope binaries (PCEBs) alone and that the existence of dCVs is needed to reproduce the observations. Also, the WD mass distribution in the gap shows evidence of two populations in this period range, i.e. PCEBs and more massive dCVs, which is not observed at longer periods. We therefore conclude that CVs are indeed crossing the gap as detached systems, which provides strong support for the DMB theory.
Models of planet formation and disc evolution predict a variety of observables in the dust structure of protoplanetary discs. Here we present Atacama Large Millimeter/submillimeter Array (ALMA) Band-6 and Band-7 observations of the transition disc Sz 91 showing that the continuum emission at 870µm, which is dominated by emission from large dust grains, is localized in an optically thin narrow ring. We find that most of the emission (∼ 95%) is concentrated in a ring located at 110 au from the central star that is only about 44 au wide. In contrast, the 12 CO (2-1) emission peaks closer to the star and is detected up to ∼ 488 au from the star. The concentration of large grains in a ring-like structure while the gas disc extends much further in and further out is in qualitative agreement with predictions of hydrodynamical models of planet-disc interactions including radial drift and gas drag.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.