Amplicon-based marker gene surveys form the basis of most microbiome and other microbial community studies. Such PCR-based methods have multiple steps, each of which is susceptible to error and bias. Variance in results has also arisen through the use of multiple methods of next-generation sequencing (NGS) amplicon library preparation. Here we formally characterized errors and biases by comparing different methods of amplicon-based NGS library preparation. Using mock community standards, we analyzed the amplification process to reveal insights into sources of experimental error and bias in amplicon-based microbial community and microbiome experiments. We present a method that improves on the current best practices and enables the detection of taxonomic groups that often go undetected with existing methods.
Reactivation of the androgen receptor (AR) during androgen depletion therapy (ADT) underlies castration-resistant prostate cancer (CRPCa). Alternative splicing of the AR gene and synthesis of constitutively-active COOH-terminally truncated AR variants lacking the AR ligand binding domain has emerged as an important mechanism of ADT-resistance in CRPCa. In a previous study, we demonstrated that altered AR splicing in CRPCa 22Rv1 cells was linked to a 35 kb intragenic tandem duplication of AR exon 3 and flanking sequences. In this study, we demonstrate that complex patterns of AR gene copy number imbalances occur in PCa cell lines, xenografts, and clinical specimens. To investigate whether these copy number imbalances reflect AR gene rearrangements that could be linked to splicing disruptions, we carried out a detailed analysis of AR gene structure in the LuCaP 86.2 and CWR-R1 models of CRPCa. By deletion-spanning PCR, we discovered a 8,579 bp deletion of AR exons 5, 6, and 7 in the LuCaP 86.2 xenograft, which provides a rational explanation for synthesis of the truncated AR v567es AR variant in this model. Similarly, targeted re-sequencing of the AR gene in CWR-R1 cells led to the discovery of a 48 kb deletion in AR intron 1. This intragenic deletion marked a specific CWR-R1 cell population with enhanced expression of the truncated AR-V7/AR3 variant, a high level of androgen-independent AR transcriptional activity, and rapid androgen independent growth. Together, these data demonstrate that structural alterations in the AR gene are linked to stable gain-of-function splicing alterations in CRPCa.
The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest.
Clinical laboratories have adopted next generation sequencing (NGS) as a gold standard for the diagnosis of hereditary disorders because of its analytic accuracy, high throughput, and potential for cost-effectiveness. We describe the implementation of a single broad-based NGS sequencing assay to meet the genetic testing needs at the University of Minnesota. A single hybrid capture library preparation was used for each test ordered, data was informatically blinded to clinically-ordered genes, and identified variants were reviewed and classified by genetic counselors and molecular pathologists. We performed 2509 sequencing tests from August 2012 till December 2017. The diagnostic yield has remained steady at 25%, but the number of variants of uncertain significance (VUS) included in a patient report decreased over time with 50% of the patient reports including at least one VUS in 2012 and only 22% of the patient reports reporting a VUS in 2017 (p = .002). Among the various clinical specialties, the diagnostic yield was highest in dermatology (60% diagnostic yield) and ophthalmology (42% diagnostic yield) while the diagnostic yield was lowest in gastrointestinal diseases and pulmonary diseases (10% detection yield in both specialties). Deletion/duplication analysis was also implemented in a subset of panels ordered, with 9% of samples having a diagnostic finding using the deletion/duplication analysis. We have demonstrated the feasibility of this broad-based NGS platform to meet the needs of our academic institution by aggregating a sufficient sample volume from many individually rare tests and providing a flexible ordering for custom, patient-specific panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.