Background:The ataxia telangiectasia mutated and Rad3-related kinase (ATR) has a key role in the signalling of stalled replication forks and DNA damage to cell cycle checkpoints and DNA repair. It has long been recognised as an important target for cancer therapy but inhibitors have proved elusive. As NU6027, originally developed as a CDK2 inhibitor, potentiated cisplatin in a CDK2-independent manner we postulated that it may inhibit ATR.Methods:Cellular ATR kinase activity was determined by CHK1 phosphorylation in human fibroblasts with inducible dominant-negative ATR-kinase dead expression and human breast cancer MCF7 cells. Cell cycle effects and chemo- and radiopotentiation by NU6027 were determined in MCF7 cells and the role of mismatch repair and p53 was determined in isogenically matched ovarian cancer A2780 cells.Results:NU6027 is a potent inhibitor of cellular ATR activity (IC50=6.7 μ) and enhanced hydroxyurea and cisplatin cytotoxicity in an ATR-dependent manner. NU6027 attenuated G2/M arrest following DNA damage, inhibited RAD51 focus formation and increased the cytotoxicity of the major classes of DNA-damaging anticancer cytotoxic therapy but not the antimitotic, paclitaxel. In A2780 cells sensitisation to cisplatin was greatest in cells with functional p53 and mismatch repair (MMR) and sensitisation to temozolomide was greatest in p53 mutant cells with functional MMR. Importantly, NU6027 was synthetically lethal when DNA single-strand break repair is impaired either through poly(ADP-ribose) polymerase (PARP) inhibition or defects in XRCC1.Conclusion:NU6027 inhibits ATR, impairing G2/M arrest and homologous recombination thus increasing sensitivity to DNA-damaging agents and PARP inhibitors. It provides proof of concept data for clinical development of ATR inhibitors.
Solvent organization is a key but underexploited contributor to the thermodynamics of protein−ligand recognition, with implications for ligand discovery, drug resistance, and protein engineering. Here, we explore the contribution of solvent to ligand binding in the Haemophilus influenzae virulence protein SiaP. By introducing a single mutation without direct ligand contacts, we observed a >1000-fold change in sialic acid binding affinity. Crystallographic and calorimetric data of wild-type and mutant SiaP showed that this change results from an enthalpically unfavorable perturbation of the solvent network. This disruption is reflected by changes in the normalized atomic displacement parameters of crystallographic water molecules. In SiaP's enclosed cavity, relative differences in water-network dynamics serve as a simple predictor of changes in the free energy of binding upon changing protein, ligand, or both. This suggests that solvent structure is an evolutionary constraint on protein sequence that contributes to ligand affinity and selectivity.
Antibiotics that interfere with the bacterial cytoplasmic membrane have long-term potential for the treatment of infectious diseases as this mode of action is anticipated to result in low resistance frequency. Vancoresmycin is an understudied natural product antibiotic consisting of a terminal tetramic acid moiety fused to a linear, highly oxygenated, stereochemically complex polyketide chain. Vancoresmycin shows minimum inhibitory concentrations (MICs) from 0.125 to 2 μg/mL against a range of clinically relevant, antibiotic-resistant Gram-positive bacteria. Through a comprehensive mode-of-action study, utilizing Bacillus subtilis reporter strains, DiSC(5) depolarization assays, and fluorescence microscopy, we have shown that vancoresmycin selectively targets the cytoplasmic membrane of Gram-positive bacteria via a non-pore-forming, concentration-dependent depolarization mechanism. Whole genome sequencing of the producing strain allowed identification of the 141 kbp gene cluster encoding for vancoresmycin biosynthesis and a preliminary model for its biosynthesis. The size and complex structure of vancoresmycin could confound attempts to generate synthetic analogues. To overcome this problem and facilitate future studies, we identified, cloned, and expressed the 141 kbp biosynthetic gene cluster in Streptomyces coelicolor M1152. Elucidation of the mode-of-action of vancoresmycin, together with the heterologous expression system, will greatly facilitate further studies of this and related molecules.
Background: Haemophilus influenzae requires a substrate-binding protein (SBP)-dependent TRAP transporter to acquire sialic acid.Results: A conserved arginine residue in the SBP is essential for the high affinity and carboxylate specificity of the TRAP transporter.Conclusion: The arginine/carboxylate interaction in TRAP SBPs restricts substrate range to carboxylate-containing substrates.Significance: The study reveals the mechanism by which a key bimolecular interaction underpins bacterial virulence.
Escherichia coli can transport and catabolize the common sialic acid, N-acetylneuraminic acid (Neu5Ac), as a sole source of carbon and nitrogen, which is an important mucus-derived carbon source in the mammalian gut. Herein we demonstrate that E. coli can also grow efficiently on the related sialic acids, N-glycolylneuraminic acid (Neu5Gc) and 3-keto-3-deoxy-D-glycero-D-galactonononic acid (KDN), which are transported via the sialic acid transporter NanT and catabolized using the sialic acid aldolase NanA. Catabolism of Neu5Gc uses the same pathway as Neu5Ac, likely producing glycolate instead and acetate during its breakdown and catabolism of KDN requires NanA activity, while other components of the Neu5Ac catabolism pathway are non-essential. We also demonstrate that these two sialic acids can support growth of an E. coli ∆nanT strain expressing sialic acid transporters from two bacterial pathogens, namely the tripartite ATP-independent periplasmic transporter SiaPQM from Haemophilus influenzae and the sodium solute symport transporter STM1128 from Salmonella enterica ssp. Typhimurium, suggesting that the ability to use Neu5Gc and KDN in addition to Neu5Ac is present in a number of human pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.