Doxorubicin (Dox) is an anthracycline used to effectively treat several forms of cancer. Unfortunately, the use of Dox is limited due to its association with cardiovascular complications which are manifested as acute and chronic cardiotoxicity. The pathophysiological mechanism of Dox induced cardiotoxicity appears to involve increased expression of the tumor suppressor protein p53 in cardiomyocytes, followed by cellular apoptosis. It is not known whether downregulation of p53 expression in cardiomyocytes would result in decreased rates of myocardial fibrosis which occurs in response to cardiomyocyte loss. Further, it is not known whether Dox can induce perivascular necrosis and associated fibrosis in the heart. In this study we measured the effects of acute Dox treatment on myocardial and perivascular apoptosis and fibrosis in a conditional knockout (CKO) mouse model system which harbours inactive p53 alleles specifically in cardiomyocytes. CKO mice treated with a single dose of Dox (20 mg/kg), did not display lower levels of myocardial apoptosis or reactive oxygen and nitrogen species (ROS/RNS) compared to control mice with intact p53 alleles. Interestingly, CKO mice also displayed higher levels of interstitial and perivascular fibrosis compared to controls 3 or 7 days after Dox treatment. Additionally, the decrease in levels of the microtubule protein α-tubulin, which occurs in response to Dox treatment, was not prevented in CKO mice. Overall, these results indicate that selective loss of p53 in cardiomyocytes is not sufficient to prevent Dox induced myocardial ROS/RNS generation, apoptosis, interstitial fibrosis and perivascular fibrosis. Further, these results support a role for p53 independent apoptotic pathways leading to Dox induced myocardial damage and highlight the importance of vascular lesions in Dox induced cardiotoxicity.
(NPRs), which can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. During cardiac development, ANP serves as an early maker of differentiating atrial and ventricular chamber myocardium. As development proceeds, expression of ANP persists in the atria but declines in the ventricles. Currently, it is not known whether ANP is secreted or the ANP-NPR signaling system plays any active role in the developing ventricles. Thus the primary aims of this study were to 1) examine biological activity of ANP signaling systems in embryonic ventricular myocardium, and 2) determine whether ANP signaling modulates proliferation/differentiation of undifferentiated cardiac progenitor cells (CPCs) and/or cardiomyocytes. Here, we provide evidence that ANP synthesized in embryonic day (E)11.5 ventricular myocytes is actively secreted and processed to its biologically active form. Notably, NPRA and NPRC were detected in E11.5 ventricles and exogenous ANP stimulated production of cGMP in ventricular cell cultures. Furthermore, we showed that exogenous ANP significantly decreased cell number and DNA synthesis of CPCs but not cardiomyocytes and this effect could be reversed by pretreatment with the NPRA receptorspecific inhibitor A71915. ANP treatment also led to a robust increase in nuclear p27 levels in CPCs compared with cardiomyocytes. Collectively, these data provide evidence that in the developing mammalian ventricles ANP plays a local paracrine role in regulating the balance between CPC proliferation and differentiation via NPRA/ cGMP-mediated signaling pathways. embryonic heart; ANP; natriuretic peptide receptors; gene expression; cardiac progenitor cells; cardiomyocytes; lineage tracking; knockin mice; cell proliferation and differentiation ATRIAL NATRIURETIC PEPTIDE (ANP) is a 28 amino acid peptide that is synthesized and stored primarily in secretory granules of atrial cardiomyocytes in the adult heart. Ligand binding of ANP to its cognate natriuretic peptide receptors (NPRs) can either activate guanylyl cyclase (NPRA and NPRB) or inhibit adenylyl cyclase (NPRC) to modulate intracellular cGMP or cAMP, respectively. The primary stimulus for ANP secretion from atrial cardiomyocytes is mechanical stretch of the atrial wall (15). In addition to mechanical stimuli, several vasoconstrictor peptides including endothelin-1 (ET-1) (36) and angiotensin II (9), as well as a variety of neurohormones, growth factors, and cytokines, have been shown to modulate natriuretic peptide secretion (10). Once in the circulation, ANP acts in a true endocrine fashion by stimulating NPRA receptors in the kidneys, adrenal cortex, and vasculature to regulate fluid homeostasis and maintain blood pressure via diuretic, natriuretic and vasorelaxant effects (29). In the ventricles of the adult heart, the levels of ANP protein are normally ϳ1,000-fold lower than in the atria and secretory granules are rarely observed (31).In contrast to the adult heart, developmental stud...
There is scant information on the fate of cardiac progenitor cells (CPC) in the embryonic heart after chamber specification. Here we simultaneously tracked three lineage-specific markers (Nkx2.5, MLC2v, and ANF) and confirmed that CPCs with an Nkx2.5 1 MLC2v 2 ANF 2 phenotype are present in the embryonic (E) day 11.5 mouse ventricular myocardium. We demonstrated that these CPCs could give rise to working cardiomyocytes and conduction system cells. Using a two-photon imaging analysis, we found that the majority of CPCs are not capable of developing Ca 21 transients in response to b-adrenergic receptor stimulation. In contrast, Nkx2.5 1 cells expressing MLC2v but not ANF are capable of developing functional Ca 21 transients. We showed that Ca 21 transients could be invoked in Nkx2.5 1 MLC2v 1 ANF 1 cells only upon inhibition of Gi, muscarinic receptors, or nitric oxide synthase (NOS) signaling pathways. Our data suggest that these inhibitory pathways may delay functional specification in a subset of developing ventricular cells.
Patients born with congenital heart defects frequently encounter arrhythmias due to defects in the ventricular conduction system (VCS) development. Although recent studies identified transcriptional networks essential for the heart development, there is scant information on the mechanisms regulating VCS development. Based on the association of atrial natriuretic peptide (ANP) expression with VCS forming regions, it was reasoned that ANP could play a critical role in differentiation of cardiac progenitor cells (CPCs) and cardiomyocytes (CMs) toward a VCS cell lineage. The present study showed that treatment of embryonic ventricular cells with ANP or cell permeable 8-Br-cGMP can induce gene expression of important VCS markers such as hyperpolarization-activated cyclic nucleotide-gated channel-4 (HCN4) and connexin 40 (Cx40). Inhibition of protein kinase G (PKG) via Rp-8-pCPT-cGMPS further confirmed the role of ANP/NPRA/cGMP/PKG pathway in the regulation of HCN4 and Cx40 gene expression. Additional experiments indicated that ANP may regulate VCS marker gene expression by modulating levels of miRNAs that are known to control the stability of transcripts encoding HCN4 and Cx40. Genetic ablation of NPRA revealed significant decreases in VCS marker gene expression and defects in Purkinje fiber arborisation. These results provide mechanistic insights into the role of ANP/NPRA signaling in VCS formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.