We present a new system for simultaneous morphological and molecular analysis of thick tissue samples. The system is composed of a computer assisted microscope and a JAVAbased image display, analysis and visualization program that allows acquisition, annotation, meaningful storage, three-dimensional reconstruction and analysis of structures of interest in thick sectioned tissue specimens. We describe the system in detail and illustrate its use by imaging, reconstructing and analyzing two complete tissue blocks which were differently processed and stained. One block was obtained from a ductal carcinoma in situ (DCIS) lumpectomy specimen and stained alternatively with Hematoxilyn and Eosin (H&E), and with a counterstain and fluorescence in situ hybridization (FISH) to the ERB-B2 gene. The second block contained a fully sectioned mammary gland of a mouse, stained for Histology with H&E.We show how the system greatly reduces the amount of interaction required for the acquisition and analysis and is therefore suitable for studies that require morphologically driven, wide scale (e.g. whole gland) analysis of complex tissue samples or cultures.2
Real-time three-dimensional (3D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for breast cancer diagnosis and treatment planning. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of breast cancer initiation and progression.In this paper we present a framework for real-time segmentation of epithelial structures in two-dimensional (2D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks.Paraffin embedded or frozen tissue blocks are first sliced, and sections are stained with Hematoxylin and Eosin. The sections are then imaged using conventional bright field microscopy and their background is corrected using a phantom image.We then use the Fast-Marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the Level-Set method which converges to an accurate (sub-pixel) solution for the segmentation problem. Finally, our system stacks together the 2D results obtained in order to reconstruct a 3D representation of the entire tissue block under study. Our method is illustrated with results from the segmentation of human and mouse mammary gland tissue samples.
In this paper we present a schem e for real time segmentation of histological structures in microscopic images of normal and neoplastic mammary gland sections. Paraffin embedded or frozen tissue blocks are sliced, and sections are stained with hematoxylin and eosin (H&E). The sections are then imaged using conventional bright field microscopy. The background of the images is corrected by arithmetic manipulation using a "phantom". Then we use the fast marching method with a speed function that depends on the brightness gradient of the image to obtain a preliminary approximation to the boundaries of the structures of interest within a region of interest (ROI) of the entire section manually selected b the user. We use the result of the fast marching method as the initial condition for the lev el set motion equation. We run this last method for a few steps and obtain the final result of the segmentation. These results can be connected from section to section to build a three-dimensional reconstruction of the entire tissue block that we are stud ing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.