The technical analysis used in determining which of the potential Advanced Encryption Standard candidates was selected as the Advanced Encryption Algorithm includes efficiency testing of both hardware and software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algorithms as they provide cryptographic algorithm agility, physical security, and potentially much higher performance than software solutions. This contribution investigates the significance of FPGA implementations of the Advanced Encryption Standard candidate algorithms. Multiple architectural implementation options are explored for each algorithm. A strong focus is placed on high throughput implementations, which are required to support security for current and future high bandwidth applications. Finally, the implementations of each algorithm will be compared in an effort to determine the most suitable candidate for hardware implementation within commercially available FPGAs.
With the expiration of the Data Encryption Standard (DES) in 1998, the Advanced Encryption Standard (AES) development process is well underway. It is hoped that the result of the AES process will be the specification of a new nonclassified encryption algorithm that will have the global acceptance achieved by DES as well as the capability of longterm protection of sensitive information. The technical analysis used in determining which of the potential AES candidates will be selected as the Advanced Encryption Algorithm includes efficiency testing of both hardware and software implementations of candidate algorithms. Reprogrammable devices such as Field Programmable Gate Arrays (FPGAs) are highly attractive options for hardware implementations of encryption algorithms as they provide cryptographic algorithm agility, physical security, and potentially much higher performance than software solutions. This contribution investigates the significance of an FPGA implementation of Serpent, one of the Advanced Encryption Standard candidate algorithms. Multiple architecture options of the Serpent algorithm will be explored with a strong focus being placed on a high speed implementation within an FPGA in order to support security for current and future high bandwidth applications. One of the main findings is that Serpent can be implemented with encryption rates beyond 4 Gbit/s on current FPGAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.