Developing a vaccine for HIV may be aided by a complete understanding of those rare cases where some HIV-infected individuals control replication of the virus1–3. The majority of these elite controllers (ECs) express HLA-B*57 or HLA-B*273. These alleles remain by far the most robust associations with low concentrations of plasma virus4,5, yet the mechanism of control in these individuals is not entirely clear. Here we vaccinated Indian rhesus macaques that express Mamu-B*08, an animal model for HLA-B*27-mediated elite control6, with three Mamu-B*08-restricted CD8+ T cell epitopes and demonstrate that these vaccinated animals controlled replication of the highly pathogenic SIVmac239 clonal virus. High frequencies of CD8+ T cells against these Vif and Nef epitopes in the blood, lymph nodes and colon, were associated with viral control. Moreover, the frequency of the Nef RL10-specific response correlated significantly with reduced acute phase viremia. Finally, two of the eight vaccinees lost control of viral replication in the chronic phase, concomitant with escape in all three targeted epitopes, further implicating these three CD8+ T cell responses in control of viral replication. Our findings indicate that narrowly targeted vaccine-induced virus-specific CD8+ T cell responses can control replication of the AIDS virus.
f Specific major histocompatibility complex (MHC) class I alleles are associated with an increased frequency of spontaneous control of human and simian immunodeficiency viruses (HIV and SIV). The mechanism of control is thought to involve MHC class I-restricted CD8 ؉ T cells, but it is not clear whether particular CD8 ؉ T cell responses or a broad repertoire of epitope-specific CD8 ؉ T cell populations (termed T cell breadth) are principally responsible for mediating immunologic control. To test the hypothesis that heterozygous macaques control SIV replication as a function of superior T cell breadth, we infected MHC-homozygous and MHC-heterozygous cynomolgus macaques with the pathogenic virus SIVmac239. As measured by a gamma interferon enzyme-linked immunosorbent spot assay (IFN-␥ ELISPOT) using blood, T cell breadth did not differ significantly between homozygotes and heterozygotes. Surprisingly, macaques that controlled SIV replication, regardless of their MHC zygosity, shared durable T cell responses against similar regions of Nef. While the limited genetic variability in these animals prevents us from making generalizations about the importance of Nef-specific T cell responses in controlling HIV, these results suggest that the T cell-mediated control of virus replication that we observed is more likely the consequence of targeting specificity rather than T cell breadth.
Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute “pre-peak” phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque ‘elite controllers’ with a short-course of dextran sulfate sodium (DSS)–stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host’s capacity to contain infection.
BackgroundA small percentage of human immunodeficiency virus (HIV)-infected people and simian immunodeficiency virus (SIV)-infected macaques control virus replication without antiretroviral treatment. The major determinant of this control is host expression of certain major histocompatibility complex alleles. However, this association is incompletely penetrant, suggesting that additional loci modify the major histocompatibility complex’s protective effect. Here, to identify candidate control-modifying loci, we sequence the genomes of 12 SIV-infected Mauritian cynomolgus macaques that experienced divergent viral load set points despite sharing the protective M1 major histocompatibility complex haplotype.ResultsOur genome-wide analysis of haplotype-level variation identifies seven candidate control-modifying loci on chromosomes 2, 3, 7, 8, 9, 10, and 14. The highest variant density marks the candidate on chromosome 7, which is the only control-modifying locus to comprise genes with known immunological function. Upon closer inspection, we found an allele for one of these genes, granzyme B, to be enriched in M1(+) controllers. Given its established role as a cytotoxic effector molecule that participates in CD8-mediated killing of virus-infected cells, we test the role of variation within gzmb in modifying SIV control by prospectively challenging M1(+) granzyme B-defined macaques.ConclusionsOur study establishes a framework for using whole genome sequencing to identify haplotypes that may contribute to complex clinical phenotypes. Further investigation into the immunogenetics underlying spontaneous HIV control may contribute to the rational design of a vaccine that prevents acquired immune deficiency syndrome.Electronic supplementary materialThe online version of this article (doi:10.1186/s13059-014-0478-z) contains supplementary material, which is available to authorized users.
A small number of HIV-infected individuals known as elite controllers experience low levels of chronic phase viral replication and delayed progression to AIDS. Specific HLA class I alleles are associated with elite control, implicating CD8+ T lymphocytes in the establishment of these low levels of viral replication. Most HIV-infected individuals that express protective HLA class I alleles, however, do not control viral replication. Approximately 50% of Mamu-B*00801+ Indian rhesus macaques control SIVmac239 replication in the chronic phase in a manner that resembles elite control in humans. We followed both the immune response and viral evolution in SIV-infected Mamu-B*00801+ animals to better understand the role of CD8+ T lymphocytes during the acute phase of viral infection, when viral control status is determined. The virus escaped from immunodominant Vif and Nef Mamu-B*00801–restricted CD8+ T lymphocyte responses during the critical early weeks of acute infection only in progressor animals that did not control viral replication. Thus, early CD8+ T lymphocyte escape is a hallmark of Mamu-B*00801+ macaques who do not control viral replication. By contrast, virus in elite controller macaques showed little evidence of variation in epitopes recognized by immunodominant CD8+ T lymphocytes, implying that these cells play a role in viral control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.