Glucocorticoids are the primary therapy for nephrotic syndrome (NS), but have serious side effects and are ineffective in ~20–50% of patients. Thiazolidinediones have recently been suggested to be renoprotective, and to modulate podocyte glucocorticoid-mediated nuclear receptor signaling. We hypothesized that thiazolidinediones could enhance glucocorticoid efficacy in NS. We found that puromycin aminonucleoside-induced proteinuria in rats was significantly reduced by both high-dose glucocorticoids (79%) and pioglitazone (61%), but not low-dose glucocorticoids (25%). Remarkably, pioglitazone + low-dose glucocorticoids also reduced proteinuria (63%) comparably to high-dose glucocorticoids, whereas pioglitazone + high-dose glucocorticoids reduced proteinuria to almost control levels (97%). Molecular analysis revealed that both glucocorticoids and pioglitazone enhanced glomerular synaptopodin and nephrin expression, and reduced COX-2 expression, after injury. Furthermore, the glomerular phosphorylation of glucocorticoid receptor and Akt, but not PPARγ, correlated with treatment-induced reductions in proteinuria. Notably, clinical translation of these findings to a child with refractory NS by the addition of pioglitazone to the treatment correlated with marked reductions in both proteinuria (80%) and overall immunosuppression (64%). These findings together suggest that repurposing pioglitazone could potentially enhance the proteinuria-reducing effects of glucocorticoids during NS treatment.
Glucocorticoids (GC) are the primary therapy for idiopathic nephrotic syndrome (NS). Recent evidence has identified glomerular podocytes as a potential site of GC action in this disease. The objectives of this study were to determine the presence of key components of the glucocorticoid receptor (GR) complex and the functionality of this signaling pathway in podocytes and to explore potential opportunities for manipulation of GC responsiveness. Here, we show that cultured murine podocytes express key components of the GR complex, including the GR, heat shock protein 90, and the immunophilins FKBP51 and FKBP52. The functionality of GR-mediated signaling was verified by measuring several GC (dexamethasone)-induced responses, including 1) increases in mRNA and protein levels of selected GC-regulated genes (FKBP51, phenol sulfotransferase 1, αB-crystallin); 2) downregulation of the GR protein; 3) increased phosphorylation of the GR; and 4) translocation of the GR into the nuclear fraction. Dexamethasone-induced phosphorylation and downregulation of GR protein were also demonstrated in isolated rat glomeruli. Podocyte gene expression in response to dexamethasone was regulated at both the transcriptional and posttranscriptional levels, the latter also including protein degradation. Short-term, high-dose GC treatment resulted in similar changes in gene expression and GR phosphorylation to that of long-term, low-dose GC treatment, thus providing a molecular rationale for the known efficacy of pulse GC therapy in NS. Induction of FKBP51 and downregulation of the GR represent negative feedback mechanisms that can potentially be exploited to improve clinical GC efficacy. Collectively, these findings demonstrate the presence of key molecular components of the GR signaling pathway and its functionality in podocytes and identify novel opportunities for improving clinical GC efficacy in the treatment of NS.
Osteogenesis imperfecta (OI) is a hereditary bone disorder most commonly caused by autosomal dominant mutations in genes encoding type I collagen. In addition to bone fragility, patients suffer from impaired longitudinal bone growth. It has been demonstrated that in OI, an accumulation of mutated type I collagen in the endoplasmic reticulum (ER) induces ER stress in osteoblasts, causing osteoblast dysfunction leading to bone fragility. We hypothesize that ER stress is also induced in the growth plate where bone growth is initiated, and examined a mouse model of dominant OI that carries a G610C mutation in the procollagen α2 chain. The results demonstrated that G610C OI mice had significantly shorter long bones with growth plate abnormalities including elongated total height and hypertrophic zone. Moreover, we found that mature hypertrophic chondrocytes expressed type I collagen and ER dilation was more pronounced compared to wild type littermates. The results from in vitro chondrocyte cultures demonstrated that the maturation of G610C OI hypertrophic chondrocytes was significantly suppressed and ER stress related genes were upregulated. Given that the alteration of hypertrophic chondrocyte activity often causes dwarfism, our findings suggest that hypertrophic chondrocyte dysfunction induced by ER stress may be an underlying cause of growth deficiency in G610C OI mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.