In recent years, there has been a debate concerning the causes of antibiotic resistance and the steps that should be taken. Beef cattle in feedlots are routinely fed a class of antibiotics known as ionophores, and these compounds increase feed efficiency by as much as 10%. Some groups have argued that ionophore resistance poses the same public health threat as conventional antibiotics, but humans are not given ionophores to combat bacterial infection. Many ruminal bacteria are ionophore-resistant, but until recently the mechanism of this resistance was not well defined. Ionophores are highly lipophilic polyethers that accumulate in cell membranes and catalyze rapid ion movement. When sensitive bacteria counteract futile ion flux with membrane ATPases and transporters, they are eventually de-energized. Aerobic bacteria and mammalian enzymes can degrade ionophores, but these pathways are oxygen-dependent and not functional in anaerobic environments like the rumen or lower GI tract. Gram-positive ruminal bacteria are in many cases more sensitive to ionophores than Gram-negative species, but this model of resistance is not always clear-cut. Some Gram-negative ruminal bacteria are initially ionophore-sensitive, and even Gram-positive bacteria can adapt. Ionophore resistance appears to be mediated by extracellular polysaccharides (glycocalyx) that exclude ionophores from the cell membrane. Because cattle not receiving ionophores have large populations of resistant bacteria, it appears that this trait is due to a physiological selection rather than a mutation per se. Genes responsible for ionophore resistance in ruminal bacteria have not been identified, but there is little evidence that ionophore resistance can be spread from one bacterium to another. Given these observations, use of ionophores in animal feed is not likely to have a significant impact on the transfer of antibiotic resistance from animals to man.
The bacteriocin, bovicin HC5, catalyzed potassium efflux from Streptococcus bovis JB1, and this activity was highly pH dependent. When the pH was near neutral, glucose-energized cells were not affected by bovicin HC5, but the intracellular steady-state concentration of potassium decreased at acidic pH values. The idea that pH was affecting bovicin HC5 binding was supported by the observation that acidic pH also enhanced the efflux of potassium from non-energized cells that had been loaded with potassium. The relationship between bovicin HC5 concentration and potassium depletion was a saturation function, but cooperativity plots indicated that the binding of one bovicin molecule to the cell membrane facilitated the binding of another.
The use of ionophores in cattle feed and the selection of ionophore-resistant ruminal bacteria does not necessarily lead to other types of antibiotic resistance.
Plant seed exudates are composed of complex mixtures of chemicals with potential for bioactive compounds with antimicrobial properties. This study focused on kochia ( Kochia scoparia ), one of many weedy plant species considered invasive in many agricultural systems. Extraction of compounds in water yielded an exudate mass equivalent to 7% of the original seed mass used. Water-soluble exudates were tested against 16 known plant pathogens in disk diffusion assays and kochia exudates were found to inhibit Colletotrichum graminicola , the fungal causative agent of anthracnose and stalk rot in maize. The narrow range of fungi found as targets suggested the mechanism of inhibition may be specific rather than broadly antifungal. A decline in viability of cells over four orders of magnitude occurred within six hours of exposure to exudate. The minimum inhibitory concentration was 3.125 mg L -1 . Hyphae formation in C . graminicola appeared inhibited following exposure to the exudate. Small molecular weight compounds as determined by GC/MS analysis showed high relative amounts of the sugars fructose, galactopyranose, glucose, and sorbitol, along with moderate proportions of organic acids and amino acids. Protein content averaged 0.7% in the standard concentration (100 mg mL -1 ) used for inhibition assays. Size fractionation of the exudate and subsequent disk diffusion assays revealed bioactive fractions with compounds in the MW range <5 kDa. To the best of our knowledge, this study is the first to show promising bioactivity against C . graminicola that was associated with water-extractable compounds from a common weed species. The results suggest that seeds of persistent plant species with long-lived seed banks like kochia may have potential for use in the discovery of compounds active in inhibiting fungal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.