The forward secondary dynamics of eight cyanobacteriochrome domains were characterized, revealing that half of them incorporate an unproductive 15ZPo subpopulation and that a nearly conserved mechanism of blue-shifting intermediates is revealed.
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward ( 15Z P r → 15E P g ) and reverse ( 15E P g → 15Z P r ) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-G f intermediate redshifted from the 15Z P r photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φ p within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
The photocycle of a reversible photoisomerizing rhodopsin mimic (M2) is investigated. This system, based on the cellular retinoic acid binding protein, is structurally different from natural rhodopsin systems, but exhibits a similar isomerization upon light irradiation. More specifically, M2 displays a 15-cis to all-trans conversion of retinal protonated Schiff base (rPSB) and all-trans to 15-cis isomerization of unprotonated Schiff base (rUSB). Here we use hybrid quantum mechanics/molecular mechanics (QM/MM) tools coupled with transient absorption and cryokinetic UV–vis spectroscopies to investigate these isomerization processes. The results suggest that primary rPSB photoisomerization of M2 occurs around the C13C14 double bond within 2 ps following an aborted-bicycle pedal (ABP) isomerization mechanism similar to natural microbial rhodopsins. The rUSB isomerization is much slower and occurs within 48 ps around the C15N double bond. Our findings reveal the possibility to engineer naturally occurring mechanistic features into artificial rhodopsins and also constitute a step toward understanding the photoisomerization of UV pigments. We conclude by reinforcing the idea that the presence of the retinal chromophore inside a tight protein cavity is not mandatory to exhibit ABP mechanism.
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15E Pg → 15Z Pr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15Z Pr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
The optical control of spin state is of interest in the development of spintronic materials for data processing and storage technologies. Photomagnetic effects at the single-molecule level have recently been observed in the thin film state at 300 K in photochromic cobalt dioxolenes. Visible light excitation leads to ring-closure of a photochromic spirooxazine bound to a cobalt dioxolene, which leads to generation of a high magnetization state. Formation of the photomagnetic state occurs through a photoisomerization-induced spin-charge excited-state process and is dictated by the spirooxazine ligand dynamics. Here, we report a mechanistic investigation by ultrafast spectroscopy in the UV-vis region of the photochemical ring-closing process in the parent spirooxazine, azahomoadamantylphenanthroline spirooxazine, and the photomagnetic spirooxazine cobalt-dioxolene complex. The cobalt appears to stabilize a photomerocycanine transient intermediate, presumably the TCC isomer, formed along the ground-state potential energy surface (PES). Structural changes associated with the TCC isomer induces formation of the high-spin Co(II) form, suggesting that magnetization dymanics can occur along the excited-state PES, leading to ultrafast switching on the ps time scale. We demonstrate the full ring closure of the spiro-oxazine ligand is not required to switch magnetization states which can be induced with a higher yielding isomerization reaction. The ability of this system to undergo optically induced spin state switching on the ps time scale in the solid state makes it a promising canididate for resistive nonvolatile memory technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.