Reproducible detection of uranyl, an important biological and environmental contaminant, from complex matrixes by surface-enhanced Raman scattering (SERS) is successfully achieved using amidoximated-polyacrylonitrile (AO-PAN) mats and carboxylated gold (Au) nanostars. SERS detection of small molecules from a sample mixture is traditionally limited by nonspecific adsorption of nontarget species to the metal nanostructures and subsequent variations in both the vibrational frequencies and intensities. Herein, this challenge is overcome using AO-PAN mats to extract uranyl from matrixes ranging in complexity including HEPES buffer, Ca(NO) and NaHCO solutions, and synthetic urine. Subsequently, Au nanostars functionalized with carboxyl-terminated alkanethiols are used to enhance the uranyl signal. The detected SERS signals scale with uranyl uptake as confirmed using liquid scintillation counting. SERS vibrational frequencies of uranyl on both hydrated and lyophilized polymer mats are largely independent of sample matrix, indicating less complexity in the uranyl species bound to the surface of the mats vs in solution. These results suggest that matrix effects, which commonly limit the use of SERS for complex sample analysis, are minimized for uranyl detection. The presented synergistic approach for isolating uranyl from complex sample matrixes and enhancing the signal using SERS is promising for real-world sample detection and eliminates the need of radioactive tracers and extensive sample pretreatment steps.
Lignocellulosic biomass is a domestically grown, sustainable, and potentially carbon-neutral feedstock for the production of liquid fuels and other value added chemicals. This underutilized renewable feedstock has the potential to alleviate some of the current socio-economic dependence on foreign petroleum supplies while stimulating rural economies. Unfortunately, the potential of biomass has largely been underdeveloped due to the recalcitrant nature of lignocellulosic materials. Task-specific ionic liquids (ILs) have shown considerable promise as an alternative non-aqueous solvent for solvation and deconstruction of lignocellulose in the presence of metal chloride catalyst or enzymes. Recently it has been hypothesized that adding oxygen atoms to the tail of an imidazolium cation would alleviate some of the negative characteristics of the ILs by increasing mass transport properties, and decreasing IL deactivation of enzymes, while at the same time retaining favorable solvation characteristics for lignocellulose. Reported here are fully atomistic molecular dynamic simulations of 1-methyltriethoxy-3-ethylimidazolium acetate ([Me-(OEt)3-Et-IM(+)] [OAc(-)]) that elucidate promising molecular-level details pertaining to the solvation characteristics of model compounds of cellulose, and IL-induced side-chain and ring puckering conformations. It is found that the anion interactions with the saccharide induce alternate ring puckering conformations from those seen in aqueous environments (i.e.(1)C4), while the cation interactions are found to influence the conformation of the ω dihedral. These perturbations in saccharide structures are discussed in the context of their contribution to the disruption of hydrogen bonding in cellulosic architecture and their role in solvation.
Organic acids are important metal chelators in environmental systems and tend to form soluble complexes in aqueous solutions, ultimately influencing the transport and bioavailability of contaminants in surface and subsurface waters. This is particularly true for the formation of uranyl citrate complexes, which have been utilized in advanced photo- and bioremediation strategies for soils contaminated with nuclear materials. Given the complexity of environmental systems, the formation of ternary or heterometallic uranyl species in aqueous solutions are also expected, particularly with Al(iii) and Fe(iii) cations. These ternary forms are reported to be more stable in aqueous solutions, potentially enhancing contaminant mobility and uptake by organisms, but the exact coordination geometries of these soluble molecular complexes have not been elucidated. To provide insight into the nature of these species, we have developed a series of geochemical model compounds ([(UO(2))(2)Al(2)(C(6)H(4)O(7))(4)](6-) (U(2)Al(2)), [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)](6-) (U(2)Fe(2)-1) and [(UO(2))(2)Fe(2)(C(6)H(4)O(7))(4)(H(2)O)(2)](6-) (U(2)Fe(2)-2) and [(UO(2))(2)Fe(4)(OH)(4)(C(6)H(4)O(7))(4)](8-) (U(2)Fe(4))) that were characterized by single-crystal X-ray diffraction and vibrational spectroscopy. Mass spectroscopy was then employed to compare the model compounds to species present in aqueous solutions to provide an enhanced understanding of the ternary uranyl citrate complexes that could be relevant in natural systems.
Water uptake isotherms indicate water uptake in metal organic nanotubes with similarities to amorphous ice and complete specificity to water in the vapor phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.