Deficient
chloride transport through cystic fibrosis (CF) transmembrane
conductance regulator (CFTR) causes lethal complications in CF patients.
CF is the most common autosomal recessive genetic disease, which is
caused by mutations in the CFTR gene; thus, CFTR mutants can serve
as primary targets for drugs to modulate and rescue the ion channel’s
function. The first step of drug modulation is to increase the expression
of CFTR in the apical plasma membrane (PM); thus, accurate measurement
of CFTR in the PM is desired. This work reports a tandem enrichment
strategy to prepare PM CFTR and uses a stable isotope labeled CFTR
sample as the quantitation reference to measure the absolute amount
of apical PM expression of CFTR in CFBE 41o- cells. It was found that
CFBE 41o- cells expressing wild-type CFTR (wtCFTR), when cultured
on plates, had 2.9 ng of the protein in the apical PM per million
cells; this represented 10% of the total CFTR found in the cells.
When these cells were polarized on filters, the apical PM expression
of CFTR increased to 14%. Turnover of CFTR in the apical PM of baby
hamster kidney cells overexpressing wtCFTR (BHK-wtCFTR) was also quantified
by targeted proteomics based on multiple reaction monitoring mass
spectrometry; wtCFTR had a half-life of 29.0 ± 2.5 h in the apical
PM. This represents the first direct measurement of CFTR turnover
using stable isotopes. The absolute quantitation and turnover measurements
of CFTR in the apical PM can significantly facilitate understanding
the disease mechanism of CF and thus the development of new disease-modifying
drugs. Absolute CFTR quantitation allows for direct result comparisons
among analyses, analysts, and laboratories and will greatly amplify
the overall outcome of CF research and therapy.
A targeted mass spectrometry-based method is presented that adopts the fast photochemical oxidation of proteins (FPOP) for footprinting of cystic fibrosis transmembrane conductance regulator (CFTR) membrane transporter at its original plasma membrane location. Two analytical imperatives were sought: (1) overall simplification in data acquisition and analysis and (2) lower quantitation limits, which enabled direct analysis of intrinsically low-abundance transmembrane proteins. These goals were achieved by using a reversed-footprinting technique that monitored the unoxidized peptides remaining after the FPOP treatment. In searching for structurally informative peptides, a workflow was designed for accurate and precise quantitation of CFTR peptides produced from proteolytically digesting the plasma membrane subproteome of cells. This sample preparation strategy mitigated the need for challenging purification of large quantities of structurally intact CFTR. On the basis of the interrogated peptides, it was proposed a concept of the structural marker peptide that could report CFTR structure and function in cells. The reversed-footprinting mass spectrometry extends the FPOP technology to study conformation and interaction changes of low-abundance proteins directly in their endogenous cellular locations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.