Drug discovery pipelines for the “neglected diseases” are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series.
Co-and post-translational N-myristoylation is known to play a role in the correct subcellular localization of specific proteins in eukaryotes. The enzyme that catalyses this reaction, NMT (Nmyristoyltransferase), has been pharmacologically validated as a drug target in the African trypanosome, Trypanosoma brucei. In the present study, we evaluate NMT as a potential drug target in Trypanosoma cruzi, the causative agent of Chagas' disease, using chemical and genetic approaches. Replacement of both allelic copies of TcNMT (T. cruzi NMT) was only possible in the presence of a constitutively expressed ectopic copy of the gene, indicating that this gene is essential for survival of T. cruzi epimastigotes. The pyrazole sulphonamide NMT inhibitor DDD85646 is 13-23-fold less potent against recombinant TcNMT than TbNMT (T.brucei NMT), with K i values of 12.7 and 22.8 nM respectively, by scintillation proximity or coupled assay methods. DDD85646 also inhibits growth of T. cruzi epimastigotes (EC 50 = 6.9 μM), but is ∼1000-fold less potent than that reported for T. brucei. Ontarget activity is demonstrated by shifts in cell potency in lines that over-and under-express NMT and by inhibition of intracellular N-myristoylation of several proteins in a dose-dependent manner. Collectively, our findings suggest that N-myristoylation is an essential and druggable target in T. cruzi.
Visceral leishmaniasis is an infectious parasitic disease caused by the protozoan parasites Leishmania donovani and Leishmania infantum. The drugs currently used to treat visceral leishmaniasis suffer from toxicity and the emergence of parasite resistance, and so a better solution would be the development of an effective subunit vaccine; however, no approved vaccine currently exists. The comparative testing of a large number of vaccine candidates requires a quantitative and reproducible experimental murine infection model, but the parameters that influence infection pathology have not been systematically determined. to address this, we have established an infection model using a transgenic luciferaseexpressing L. donovani parasite and longitudinally quantified the infections using in vivo bioluminescent imaging within individual mice. We examined the effects of varying the infection route, the site of adjuvant formulation administration, and standardised the parasite preparation and dose. We observed that the increase in parasite load within the liver during the first few weeks of infection was directly proportional to the parasite number in the initial inoculum. finally, we show that immunity can be induced in pre-exposed animals that have resolved an initial infection. this murine infection model provides a platform for systematic subunit vaccine testing against visceral leishmaniasis.Protozoa of the genus Leishmania are obligate intracellular parasites which cause the disease leishmaniasis. The parasite is transmitted by the bite of an infected female phlebotomine sand fly during a blood meal, and every year there are an estimated ~1 million new infections resulting in ~65,000 deaths 1 . Although the disease burden disproportionately affects poor people living in tropical and developing countries, the expanding geographic range of vector distribution caused by climate and environmental changes is an emerging threat outside these regions 2-4 . Outbreaks and re-emergence of leishmaniasis are also linked to other factors including political and socioeconomic upheavals 5-7 . Within the human host, Leishmania spp. cause a spectrum of species-specific clinical manifestations known as cutaneous, mucocutaneous or visceral leishmaniases, and it is the visceral form that is considered to be the most severe, and is ultimately fatal if left untreated. Symptomatic visceral leishmaniasis (VL), results from infections of L. donovani and L. infantum, and while representing only ~10% of all symptomatic leishmanial infections, they are responsible for nearly all leishmaniasis-attributed fatalities 1 . The current front-line drug treatments for VL: liposomal amphotericin B, miltefosine, paromomycin and antimonials, are far from ideal, with major concerns surrounding general toxicity or increased treatment failure 8,9 . While improved drugs are being developed 10,11 , the deployment of an effective vaccine would be an important disease control tool, but to date, no effective vaccine has been licensed for human leishmaniasis.The e...
Trypanosomatid parasites are the infectious agents causing Chagas disease, visceral and cutaneous leishmaniasis and human African trypanosomiasis. Recent work of others has implicated an aldo-keto reductase (AKR) in the susceptibility and resistance of Trypanosoma cruzi to benznidazole, a drug used to treat Chagas disease. Here, we show that TcAKR and homologues in the related parasites Trypanosoma brucei and Leishmania donovani do not reductively activate monocyclic (benznidazole, nifurtimox and fexinidazole) or bicyclic nitro-drugs such as PA-824. Rather, these enzymes metabolise a variety of toxic ketoaldehydes, such as glyoxal and methylglyoxal, suggesting a role in cellular defence against chemical stress. UPLC-QToF/MS analysis of benznidazole bioactivation by T. cruzi cell lysates confirms previous reports identifying numerous drug metabolites, including a dihydro-dihydroxy intermediate that can dissociate to form N-benzyl-2-guanidinoacetamide and glyoxal, a toxic DNA-glycating and cross-linking agent. Thus, we propose that TcAKR contributes to benznidazole resistance by the removal of toxic glyoxal. In addition, three of the four enzymes studied here display activity as prostaglandin F2α synthases, despite the fact that there are no credible cyclooxygenases in these parasites to account for formation of the precursor PGH2 from arachidonic acid. Our studies suggest that arachidonic acid is first converted non-enzymatically in parasite lysates to (PGH2-like) regioisomers by free radical-mediated peroxidation and that AKRs convert these lipid peroxides into isoprostanes, including prostaglandin F2α and 8-iso-prostaglandin F2α.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.