Introduction: Highly aggressive thoracic neoplasms characterized by SMARCA4 (BRG1) deficiency and undifferentiated round cell or rhabdoid morphology have been recently described and proposed to represent thoracic sarcomas. However, it remains unclear whether such tumors may instead represent sarcomatoid carcinomas, and how their clinicopathologic characteristics compare with those of nonsarcomatoid SMARCA4-deficient non–small cell lung carcinomas (SD-NSCC). Methods: We identified 22 SMARCA4-deficient thoracic sarcomatoid tumors (SD-TSTs) with round cell and/or rhabdoid morphology and 45 SD-NSCCs, and comprehensively analyzed their clinicopathologic, immunohistochemical, and genomic characteristics using 341–468 gene next-generation sequencing and other molecular platforms. Results: The relationship of SD-TSTs with NSCC was supported by (1) the presence of NSCC components juxtaposed with sarcomatoid areas in five cases, (2) focal expression of NSCC lineage markers TTF1 or p40 in four additional cases, (3) smoking history in all except one patient (mean = 51 pack-years), accompanied by genomic smoking signature, and (4) high tumor mutation burden (mean = 14.2 mutations per megabase) and mutations characteristic of NSCC in a subset. Compared with SD-NSCCs, SD-TSTs exhibited considerably larger primary tumor size ( p < 0.0001), worse survival ( p = 0.004), and more frequent presentation at younger age (30–50 years) despite heavier smoking history. Distinctive pathologic features of SD-TSTs included consistent lack of adhesion molecule claudin-4, SMARCA2 (BRM) codeficiency, and frequent expression of stem cell markers. Conclusions: SD-TSTs represent primarily smoking-associated undifferentiated/de-differentiated carcinomas rather than primary thoracic sarcomas. Despite their histogenetic relationship with NSCC, these tumors have unique clinicopathologic characteristics, supporting their recognition as a distinct entity. Further studies are warranted to determine therapeutic approaches to this novel class of exceptionally aggressive thoracic tumors.
Background: Patients with lung cancers may have disproportionately severe coronavirus disease 2019 outcomes. Understanding the patient-specific and cancer-specific features that impact the severity of COVID-19 may inform optimal cancer care during this pandemic. Patients and methods: We examined consecutive patients with lung cancer and confirmed diagnosis of COVID-19 (n ¼ 102) at a single center from 12 March 2020 to 6 May 2020. Thresholds of severity were defined a priori as hospitalization, intensive care unit/intubation/do not intubate ([ICU/intubation/DNI] a composite metric of severe disease), or death. Recovery was defined as >14 days from COVID-19 test and >3 days since symptom resolution. Human leukocyte antigen (HLA) alleles were inferred from MSK-IMPACT (n ¼ 46) and compared with controls with lung cancer and no known non-COVID-19 (n ¼ 5166). Results: COVID-19 was severe in patients with lung cancer (62% hospitalized, 25% died). Although severe, COVID-19 accounted for a minority of overall lung cancer deaths during the pandemic (11% overall). Determinants of COVID-19 severity were largely patient-specific features, including smoking status and chronic obstructive pulmonary disease [odds ratio for severe COVID-19 2.9, 95% confidence interval 1.07e9.44 comparing the median (23.5 packyears) to never-smoker and 3.87, 95% confidence interval 1.35e9.68, respectively]. Cancer-specific features, including prior thoracic surgery/radiation and recent systemic therapies did not impact severity. Human leukocyte antigen supertypes were generally similar in mild or severe cases of COVID-19 compared with non-COVID-19 controls. Most patients recovered from COVID-19, including 25% patients initially requiring intubation. Among hospitalized patients, hydroxychloroquine did not improve COVID-19 outcomes. Conclusion: COVID-19 is associated with high burden of severity in patients with lung cancer. Patient-specific features, rather than cancer-specific features or treatments, are the greatest determinants of severity.
Background: Programmed death-ligand 1 (PD-L1) expression is the only FDA-approved biomarker for immune checkpoint inhibitors (ICIs) in patients with lung adenocarcinoma, but sensitivity is modest. Understanding the impact of molecular phenotype, clinical characteristics, and tumor features on PD-L1 expression is largely unknown and may improve prediction of response to ICI. Patients and methods: We evaluated patients with lung adenocarcinoma for whom PD-L1 testing and targeted nextgeneration sequencing (using MSK-IMPACT) was performed on the same tissue sample. Clinical and molecular features were compared across PD-L1 subgroups to examine how molecular phenotype associated with tumor PD-L1 expression. In patients treated with anti-PD-(L)1 blockade, we assessed how these interactions impacted efficacy. Results: A total of 1586 patients with lung adenocarcinoma had paired PD-L1 testing and targeted next-generation sequencing. PD-L1 negativity was more common in primary compared to metastatic samples (P < 0.001). The distribution of PD-L1 expression (lymph nodes enriched for PD-L1 high; bones predominantly PD-L1 negative) and predictiveness of PD-L1 expression on ICI response varied by organ. Mutations in KRAS, TP53, and MET significantly associated with PD-L1 high expression (each P < 0.001, Q < 0.001) and EGFR and STK11 mutations associated with PD-L1 negativity (P < 0.001, Q ¼ 0.01; P ¼ 0.001, Q < 0.001, respectively). WNT pathway alterations also associated with PD-L1 negativity (P ¼ 0.005). EGFR and STK11 mutants abrogated the predictive value of PD-L1 expression on ICI response. Conclusion: PD-L1 expression and association with ICI response vary across tissue sample sites. Specific molecular features are associated with differential expression of PD-L1 and may impact the predictive capacity of PD-L1 for response to ICIs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.