Field experiments were conducted to evaluate the effect of five spray-nozzle types and three drift-control adjuvants (DCA) on glyphosate spray drift. The extended-range (XR) flat-fan nozzle at 280 kPa was used as the standard comparison. DCAs were evaluated for drift reduction with the use of the XR and air-induction (AI) nozzles. Wind speed ranged from 1.3 to 9.4 m/s (3 to 21 mph). Lethal drift (DL) and injury drift (DI) were determined by downwind visual observation of grain sorghum response. Drift distances were measured from the spray swath edge. The Turbo FloodJet and AI nozzles reduced DLdistance by 34%. All four drift-reducing (DR) nozzles reduced DIdistance by 22 to 32%. Reducing the pressure of the XR flat-fan nozzle from 280 to 140 kPa did not reduce DLor DIdistance. When applied through AI nozzles, each DCA increased droplet volume diameter, one DCA reduced DIdistance and none reduced DLdistance when applied through XR tips. The DCAs did not affect DLor DIdistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.