Emx2 is a homeodomain protein that plays a critical role in inner ear development. Homozygous null mice die at birth with a range of defects in the CNS, renal system and skeleton. The cochlea is shorter than normal with about 60% fewer auditory hair cells. It appears to lack outer hair cells and some supporting cells are either absent or fail to differentiate. Many of the hair cells differentiate in pairs and although their hair bundles develop normally their planar cell polarity is compromised. Measurements of cell polarity suggest that classic planar cell polarity molecules are not directly influenced by Emx2 and that polarity is compromised by developmental defects in the sensory precursor population or by defects in epithelial cues for cell alignment. Planar cell polarity is normal in the vestibular epithelia although polarity reversal across the striola is absent in both the utricular and saccular maculae. In contrast, cochlear hair cell polarity is disorganized. The expression domain for Bmp4 is expanded and Fgfr1 and Prox1 are expressed in fewer cells in the cochlear sensory epithelium of Emx2 null mice. We conclude that Emx2 regulates early developmental events that balance cell proliferation and differentiation in the sensory precursor population.
The auditory neuroblast cell line US/VOT-N33 (N33), which is conditionally immortal, was studied as an in vitro model for the differentiation of spiral ganglion neurons (SGNs) and as a candidate for cell transplantation in rodents. It expresses numerous molecular markers characteristic of auditory neuroblasts, including the transcription factors GATA3, NeuroD, Brn3a and Islet1, as well as the neuronal cytoskeletal protein beta3-tubulin. It displays active migratory behaviour in vitro and in vivo. In the presence of the fibroblast growth factors FGF1 or FGF2 it differentiates bipolar morphologies similar to those of native SGNs. In coculture with neonatal cochlear tissue it is repelled from epithelial surfaces but not from native SGNs, alongside which it extends parallel neuronal processes. When injected into the retina in vivo, EGFP-labelled N33 cells were traced for 1-2 weeks and migrated rapidly within the subretinal space. Cells that found their way into the retinal ganglion cell layer extended multiple processes but did not express beta3-tubulin. The ability of N33 to migrate, to differentiate, to localize with native SGNs in vitro and to survive in vivo suggests that they provide an effective model for SGN differentiation and for cell transplantation into the ear.
We have studied the function of the zinc finger transcription factor gata3 in auditory system development by analysing temporal profiles of gene expression during differentiation of conditionally immortal cell lines derived to model specific auditory cell types and developmental stages. We tested and applied a novel probabilistic method called the gamma Model for Oligonucleotide Signals to analyse hybridization signals from Affymetrix oligonucleotide arrays. Expression levels estimated by this method correlated closely (p<0.0001) across a 10-fold range with those measured by quantitative RT-PCR for a sample of 61 different genes. In an unbiased list of 26 genes whose temporal profiles clustered most closely with that of gata3 in all cell lines, 10 were linked to Insulin-like Growth Factor signalling, including the serine/threonine kinase Akt/PKB. Knock-down of gata3 in vitro was associated with a decrease in expression of genes linked to IGF-signalling, including IGF1, IGF2 and several IGF-binding proteins. It also led to a small decrease in protein levels of the serine-threonine kinase Akt2/PKBβ, a dramatic increase in Akt1/PKBα protein and relocation of Akt1/PKBα from the nucleus to the cytoplasm. The cyclin-dependent kinase inhibitor p27kip1, a known target of PKB/Akt, simultaneously decreased. In heterozygous gata3 null mice the expression of gata3 correlated with high levels of activated Akt/PKB. This functional relationship could explain the diverse function of gata3 during development, the hearing loss associated with gata3 heterozygous null mice and the broader symptoms of human patients with Hearing-Deafness-Renal anomaly syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.