IntroductionThe septomarginal trabecula is a constant element of the anatomy of the human heart, which connects the interventricular septum and the anterior wall of the right ventricle. Considering the diversity of opinions about the structure and numerous studies suggesting its important role in haemodynamics and conduction of electrical impulses in the heart, we decided to study this element in detail.Material and methodsThe research was conducted on 220 human hearts. Attention was mainly paid to the structure and topography of the trabecula. Its relation to the anterior papillary muscle was also a part of the study.ResultsThe presence of this morphologically diverse element was confirmed in each of the studied hearts. In most cases the trabecula originated from the upper part of the interventricular septum, separating at an angle increasing proportionally to the number of branches of the crista supraventricularis as well as the number of secondary trabeculae. The criteria established for the study, which included the course of the trabecula in the lumen of the right ventricle and its relation to the anterior papillary muscle, let us distinguish 4 types of septomarginal trabecula (I, II, III, IV). The most common was type III, the undivided trabecula, tightly connecting with the anterior papillary muscle.ConclusionsBased on the results of the following study we propose a hypothesis on the genesis of respective parts of the septomarginal trabecula and a plausible sequence of changes they undergo during human ontogenesis and phylogenesis of the primates.
The morphology of myocardial bridges (MB) in the heart of the domestic pig remain an open issue. Despite numerous analyses of the subject, many controversies still exist. Opinions also differ when the influence of the MB on haemodynamic processes in the coronal vessel system is concerned. In the examined group of 150 domestic pig's hearts, the length of the detected MB varied from 1.8 to 39.7 mm while their thickness amounted to 0.8 -4.7 mm. Both the longest and the thickest bridges were connected with the posterior interventricular branch. It was noticed that the MB muscle bands cross the long axis of the vessels located in the grooves mostly at almost a right angle. Three forms of perivascular space were educed using the criterion of the distance of the vessel from the surrounding muscularis externa.
IntroductionFalse chordae tendineae are fibrous-muscular bundles which do not interconnect with right atrioventricular valves. The structures have occasionally been described in the right ventricle. There are reports suggesting their influence on electromechanical processes taking place in the heart, in thromboembolic events as well as in the course of cardiac invasive procedures. The objective of the study was to perform a macroscopic evaluation of false chordae tendineae in the right ventricle.Material and methodsThe research specimens consisted of 100 hearts of adult humans, aged from 18 to 59 years, fixed in a solution of 10% formaldehyde and 98% ethanol. The ratio of false chordae tendineae to individual elements of the right ventricle, such as its walls, papillary muscles, septomarginal trabecula and the apex of the ventricle, was examined.ResultsDuring examination, six types of chordae tendineae were described based on the criterion of the type of structures they connected. The most common were false chordae connecting ventricle walls within its apex, while the least common were individual segments of papillary muscles. The research proved that the examined structures are morphologically extremely diverse. Substantial clinical implications of their presence seem very probable.ConclusionsThe present work is the first of a scheduled series devoted to the problem of false chordae tendineae. Further analyses will cover the subject of morphological aspects in a microscopic perspective.
BackgroundBoth the advancement of visual techniques and intensive progress in perinatal medicine result in performing airway management in the fetus and neonate affected by life-threatening malformations. This study aimed to examine the 3 tracheo-bronchial angles, including the right and left bronchial angles, and the interbronchial angle, in the fetus at various gestational ages.Material/MethodsUsing methods of anatomical dissection, digital image analysis with an adequate program (NIS-Elements BR 3.0, Nikon), and statistics, values of the two bronchial angles and their sum as the interbronchial angle were semi-automatically measured in 73 human fetuses at the age of 14–25 weeks, derived from spontaneous abortions and stillbirths.ResultsNo male-female differences between the parameters studied were found. The 3 fetal tracheo-bronchial angles were found to be independent of age. The right bronchial angle ranged from 11.4° to 41.8°, and averaged 26.9±7.0° for the whole analyzed sample. The values of left bronchial angle varied from 24.8° to 64.8°, with the overall mean of 46.2±8.0°. As a consequence, the interbronchial angle totalled 36.2–96.6°, and averaged 73.1±12.7°.ConclusionsThe tracheo-bronchial angles change independently of sex and fetal age. The left bronchial angle is wider than the right one. Values of the 3 tracheo-bronchial angles are unpredictable since their regression curves of best fit with relation to fetal age cannot be modelled. Both of the 2 bronchial angles and the interbronchial angle are of great relevance in the location of inhaled foreign bodies, and in the diagnosis cardiac diseases and mediastinal abnormalities.
PurposeKnowledge on the normative growth of the spine is critical in the prenatal detection of its abnormalities. We aimed to study the size of T6 vertebra in human fetuses with the crown-rump length of 115–265 mm.Materials and methodsUsing the methods of computed tomography (Biograph mCT), digital image analysis (Osirix 3.9) and statistics, the normative growth of the T6 vertebral body and the three ossification centers of T6 vertebra in 55 spontaneously aborted human fetuses (27 males, 28 females) aged 17–30 weeks were studied.ResultsNeither male–female nor right–left significant differences were found. The height, transverse, and sagittal diameters of the T6 vertebral body followed natural logarithmic functions as y = −4.972 + 2.732 × ln(age) ± 0.253 (R2 = 0.72), y = −14.862 + 6.426 × ln(age) ± 0.456 (R2 = 0.82), and y = −10.990 + 4.982 × ln(age) ± 0.278 (R2 = 0.89), respectively. Its cross-sectional area (CSA) rose proportionately as y = −19.909 + 1.664 × age ± 2.033 (R2 = 0.89), whereas its volumetric growth followed the four-degree polynomial function y = 19.158 + 0.0002 × age4 ± 7.942 (R2 = 0.93). The T6 body ossification center grew logarithmically in both transverse and sagittal diameters as y = −14.784 + 6.115 × ln(age) ± 0.458 (R2 = 0.81) and y = −12.065 + 5.019 × ln(age) ± 0.315 (R2 = 0.87), and proportionately in both CSA and volume like y = −15.591 + 1.200 × age ± 1.470 (R2 = 0.90) and y = −22.120 + 1.663 × age ± 1.869 (R2 = 0.91), respectively. The ossification center-to-vertebral body volume ratio was gradually decreasing with age. On the right and left, the neural ossification centers revealed the following models: y = −15.188 + 6.332 × ln(age) ± 0.629 (R2 = 0.72) and y = −15.991 + 6.600 × ln(age) ± 0.629 (R2 = 0.74) for length, y = −6.716 + 2.814 × ln(age) ± 0.362 (R2 = 0.61) and y = −7.058 + 2.976 × ln(age) ± 0.323 (R2 = 0.67) for width, y = −5.665 + 0.591 × age ± 1.251 (R2 = 0.86) and y = −11.281 + 0.853 × age ± 1.653 (R2 = 0.78) for CSA, and y = −9.279 + 0.849 × age ± 2.302 (R2 = 0.65) and y = −16.117 + 1.155 × age ± 1.832 (R2 = 0.84) for volume, respectively.ConclusionsNeither sex nor laterality differences are found in the morphometric parameters of evolving T6 vertebra and its three ossification centers. The growth dynamics of the T6 vertebral body follow logarithmically for its height, and both sagittal and transverse diameters, linearly for its CSA, and four-degree polynomially for its volume. The three ossification centers of T6 vertebra increase logarithmically in both transverse and sagittal diameters, and linearly in both CSA and volume. The age-specific reference intervals for evolving T6 vertebra present the normative values of potential relevance in the diagnosis of congenital spinal defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.