Huntington’s Disease (HD) is a devastating neurodegenerative disorder that is caused by an expanded CAG trinucleotide repeat in the Huntingtin (HTT) gene. Transcriptional dysregulation in the human HD brain has been documented but is incompletely understood. Here we present a genome-wide analysis of mRNA expression in human prefrontal cortex from 20 HD and 49 neuropathologically normal controls using next generation high-throughput sequencing. Surprisingly, 19% (5,480) of the 28,087 confidently detected genes are differentially expressed (FDR<0.05) and are predominantly up-regulated. A novel hypothesis-free geneset enrichment method that dissects large gene lists into functionally and transcriptionally related groups discovers that the differentially expressed genes are enriched for immune response, neuroinflammation, and developmental genes. Markers for all major brain cell types are observed, suggesting that HD invokes a systemic response in the brain area studied. Unexpectedly, the most strongly differentially expressed genes are a homeotic gene set (represented by Hox and other homeobox genes), that are almost exclusively expressed in HD, a profile not widely implicated in HD pathogenesis. The significance of transcriptional changes of developmental processes in the HD brain is poorly understood and warrants further investigation. The role of inflammation and the significance of non-neuronal involvement in HD pathogenesis suggest anti-inflammatory therapeutics may offer important opportunities in treating HD.
Transcriptional dysregulation is an early feature of Huntington disease (HD). We observed gene-specific changes in histone H3 lysine 4 trimethylation (H3K4me3) at transcriptionally repressed promoters in R6/2 mouse and human HD brain. Genome-wide analysis showed a chromatin signature for this mark. Reducing the levels of the H3K4 demethylase SMCX/Jarid1c in primary neurons reversed down-regulation of key neuronal genes caused by mutant Huntingtin expression. Finally, reduction of SMCX/Jarid1c in primary neurons from BACHD mice or the single Jarid1 in a Drosophila HD model was protective. Therefore, targeting this epigenetic signature may be an effective strategy to ameliorate the consequences of HD.polyglutamine | neurodegeneration H untington disease (HD), a neurodegenerative disease (1, 2) characterized by cognitive dysfunction, psychiatric symptoms, and choreic movements (2), exhibits brain region-specific neuronal degeneration in the striatum and cortex. Currently, no disease-modifying treatment is available. The genetic basis of HD is the expansion of an in-frame CAG repeat sequence encoding polyglutamine. Progressive transcriptional dysregulation in both cortex and striatum and atrophy of the cortex are characteristic features (3). Transcriptional repression of key neuronal transcripts, including neurotransmitters, growth factors, and their cognate receptors, is consistently observed and implicated in disease pathogenesis. Among the critical genes whose expression is repressed in HD mouse models and human brain tissue are the dopamine receptor 2 (Drd2), preproenkephalin (Penk1), the cannabinoid receptor (Cb2), and brain-derived neurotrophic factor (Bdnf) (4, 5).We hypothesized that a central event in the pathological program underlying transcriptional dysregulation includes alterations in chromatin structure in the regulatory regions of genes down-regulated in HD. To evaluate this hypothesis, we focused on H3K4 trimethylation (H3K4me3), a mark of transcription start sites (TSSs) and active chromatin (6-8). Growing evidence suggests that this mark is plastic and modulated in conditions of chronic stress, developmental disorders, psychiatric disorders (9-11) as well as during long-term memory consolidation from contextual fear conditioning (12), suggesting a critical function in brain.We first investigated H3K4me3 in the R6/2 mouse model of HD, which shows patterns of transcriptional dysregulation similar to postmortem HD brain (13,14). Using chromatin immunoprecipitation (ChIP), we examined H3K4me3 levels for Bdnf, which is expressed in the cortex, provides trophic support for GABAergic medium spiny neurons, and is expressed at lower levels in HD (5, 15). The potential significance of Bdnf in HD is reflected by transcriptional profiling (16) and therapeutic preclinical studies (17,18). Because H3K4me3 levels were lowered at Bdnf and other promoters in R6/2 mice and key neuronal genes in human HD brain cortex and striata, we expanded our approach to investigate the genome-wide relationship between H3K4me3 an...
Summary Polycomb repressive complexes (PRCs) play key roles in developmental epigenetic regulation. Yet the mechanisms that target PRCs to specific loci in mammalian cells remain incompletely understood. In this study, we show that Bmi1, a core component of Polycomb Repressive Complex 1 (PRC1), binds directly to the Runx1/CBFβ transcription factor complex. Genome-wide studies in megakaryocytic cells demonstrate significant chromatin occupancy overlap between the PRC1 core component Ring1b and Runx1/CBFβ, and functional regulation of a considerable fraction of commonly bound genes. Bmi1/Ring1b and Runx1/CBFβ deficiency generate partial phenocopies of one another in vivo. We also show that Ring1b occupies key Runx1 binding sites in primary murine thymocytes and that this occurs via Polycomb Repressive Complex 2 (PRC2) independent mechanisms. Genetic depletion of Runx1 results in reduced Ring1b binding at these sites in vivo. These findings provide evidence for site-specific PRC1 chromatin recruitment by core binding transcription factors in mammalian cells.
BackgroundParkinson disease (PD) is a neurodegenerative disease characterized by the accumulation of alpha-synuclein (SNCA) and other proteins in aggregates termed “Lewy Bodies” within neurons. PD has both genetic and environmental risk factors, and while processes leading to aberrant protein aggregation are unknown, past work points to abnormal levels of SNCA and other proteins. Although several genome-wide studies have been performed for PD, these have focused on DNA sequence variants by genome-wide association studies (GWAS) and on RNA levels (microarray transcriptomics), while genome-wide proteomics analysis has been lacking.MethodsThis study employed two state-of-the-art technologies, three-stage Mass Spectrometry Tandem Mass Tag Proteomics (12 PD, 12 controls) and RNA-sequencing transcriptomics (29 PD, 44 controls), evaluated in the context of PD GWAS implicated loci and microarray transcriptomics (19 PD, 24 controls). The technologies applied for this study were performed in a set of overlapping prefrontal cortex (Brodmann area 9) samples obtained from PD patients and sex and age similar neurologically healthy controls.ResultsAfter appropriate filters, proteomics robustly identified 3558 unique proteins, with 283 of these (7.9 %) significantly different between PD and controls (q-value < 0.05). RNA-sequencing identified 17,580 protein-coding genes, with 1095 of these (6.2 %) significantly different (FDR p-value < 0.05); only 166 of the FDR significant protein-coding genes (0.94 %) were present among the 3558 proteins characterized. Of these 166, eight genes (4.8 %) were significant in both studies, with the same direction of effect. Functional enrichment analysis of the proteomics results strongly supports mitochondrial-related pathways, while comparable analysis of the RNA-sequencing results implicates protein folding pathways and metallothioneins. Ten of the implicated genes or proteins co-localized to GWAS loci. Evidence implicating SNCA was stronger in proteomics than in RNA-sequencing analyses.ConclusionsWe report the largest analysis of proteomics in PD to date, and the first to combine this technology with RNA-sequencing to investigate GWAS implicated loci. Notably, differentially expressed protein-coding genes were more likely to not be characterized in the proteomics analysis, which lessens the ability to compare across platforms. Combining multiple genome-wide platforms offers novel insights into the pathological processes responsible for this disease by identifying pathways implicated across methodologies.Electronic supplementary materialThe online version of this article (doi:10.1186/s12920-016-0164-y) contains supplementary material, which is available to authorized users.
The earliest stages of Huntington disease are marked by changes in gene expression that are caused in an indirect and poorly understood manner by polyglutamine expansions in the huntingtin (HTT) protein. To explore the hypothesis that DNA methylation may be altered in cells expressing mutated HTT, we use reduced representation bisulfite sequencing (RRBS) to map sites of DNA methylation in cells carrying either wild-type or mutant HTT. We find that a large fraction of the genes that change in expression in the presence of mutant huntingtin demonstrate significant changes in DNA methylation. Regions with low CpG content, which have previously been shown to undergo methylation changes in response to neuronal activity, are disproportionately affected. On the basis of the sequence of regions that change in methylation, we identify AP-1 and SOX2 as transcriptional regulators associated with DNA methylation changes, and we confirm these hypotheses using genome-wide chromatin immunoprecipitation sequencing (ChIP-Seq). Our findings suggest new mechanisms for the effects of polyglutamine-expanded HTT. These results also raise important questions about the potential effects of changes in DNA methylation on neurogenesis and cognitive decline in patients with Huntington disease.epigenomics | transcription | mRNA-Seq H untington disease (HD) is a fatal, neurodegenerative disorder caused by an expanded CAG repeat in the huntingtin (HTT) gene, which encodes an abnormally long polyglutamine repeat in the HTT protein. In the early stages of the disease, patients are largely asymptomatic, although they may suffer from mild cognitive impairment and behavioral changes. With time, they develop severe motor dysfunction as well as more pronounced cognitive and psychiatric symptoms. Transcriptional dysregulation is a major component of the early stages of HD, before significant neuronal death. Changes in transcription have been detected in human postmortem tissue (1), mouse models (2-4), and cell culture models (5). Genes reproducibly shown to be differentially expressed across HD models are associated with processes including neurotransmission, neurotrophin receptor signaling, signal transduction, calcium ion transport, synaptic organization, chromatin remodeling, G-protein receptor-coupled signaling, and metabolism (6). The polyglutamine expanded form of HTT may have a direct role in causing these expression changes. A number of DNA-binding proteins have been shown to physically interact with either wild-type or mutant HTT. These include NRSF/REST, CBP, PGC1α, Sp1, BCL11b, p53, LXRα, polycombgroup proteins, SIN3A, and NCOR1 (6). Any effect of HTT on the subcellular localization, activity, or concentration of these proteins would be likely to directly change gene expression.Two lines of evidence suggest that alterations in HTT could also influence DNA methylation. First, histone marks are altered in HD (7-11) and SETD2, a SET domain regulator of H3K36me3, has been previously reported to interact with mutant HTT (12). Due to biochemical...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.