Improved understanding and management of COVID-19, a potentially life-threatening disease, could greatly reduce the threat posed by its etiologic agent, SARS-CoV-2. Toward this end, we have identified a core peripheral blood immune signature across 63 hospital-treated patients with COVID-19 who were otherwise highly heterogeneous. The signature includes discrete changes in B and myelomonocytic cell composition, profoundly altered T cell phenotypes, selective cytokine/chemokine upregulation and SARS-CoV-2-specific antibodies. Some signature traits identify links with other settings of immunoprotection and immunopathology; others, including basophil and plasmacytoid dendritic cell depletion, correlate strongly with disease severity; while a third set of traits, including a triad of IP-10, interleukin-10 and interleukin-6, anticipate subsequent clinical progression. Hence, contingent upon independent validation in other COVID-19 cohorts, individual traits within this signature may collectively and individually guide treatment options; offer insights into COVID-19 pathogenesis; and aid early, risk-based patient stratification that is particularly beneficial in phasic diseases such as COVID-19.
Background The efficacy and safety profiles of vaccines against SARS-CoV-2 in patients with cancer is unknown. We aimed to assess the safety and immunogenicity of the BNT162b2 (Pfizer–BioNTech) vaccine in patients with cancer. Methods For this prospective observational study, we recruited patients with cancer and healthy controls (mostly health-care workers) from three London hospitals between Dec 8, 2020, and Feb 18, 2021. Participants who were vaccinated between Dec 8 and Dec 29, 2020, received two 30 μg doses of BNT162b2 administered intramuscularly 21 days apart; patients vaccinated after this date received only one 30 μg dose with a planned follow-up boost at 12 weeks. Blood samples were taken before vaccination and at 3 weeks and 5 weeks after the first vaccination. Where possible, serial nasopharyngeal real-time RT-PCR (rRT-PCR) swab tests were done every 10 days or in cases of symptomatic COVID-19. The coprimary endpoints were seroconversion to SARS-CoV-2 spike (S) protein in patients with cancer following the first vaccination with the BNT162b2 vaccine and the effect of vaccine boosting after 21 days on seroconversion. All participants with available data were included in the safety and immunogenicity analyses. Ongoing follow-up is underway for further blood sampling after the delayed (12-week) vaccine boost. This study is registered with the NHS Health Research Authority and Health and Care Research Wales (REC ID 20/HRA/2031). Findings 151 patients with cancer (95 patients with solid cancer and 56 patients with haematological cancer) and 54 healthy controls were enrolled. For this interim data analysis of the safety and immunogenicity of vaccinated patients with cancer, samples and data obtained up to March 19, 2021, were analysed. After exclusion of 17 patients who had been exposed to SARS-CoV-2 (detected by either antibody seroconversion or a positive rRT-PCR COVID-19 swab test) from the immunogenicity analysis, the proportion of positive anti-S IgG titres at approximately 21 days following a single vaccine inoculum across the three cohorts were 32 (94%; 95% CI 81–98) of 34 healthy controls; 21 (38%; 26–51) of 56 patients with solid cancer, and eight (18%; 10–32) of 44 patients with haematological cancer. 16 healthy controls, 25 patients with solid cancer, and six patients with haematological cancer received a second dose on day 21. Of the patients with available blood samples 2 weeks following a 21-day vaccine boost, and excluding 17 participants with evidence of previous natural SARS-CoV-2 exposure, 18 (95%; 95% CI 75–99) of 19 patients with solid cancer, 12 (100%; 76–100) of 12 healthy controls, and three (60%; 23–88) of five patients with haematological cancers were seropositive, compared with ten (30%; 17–47) of 33, 18 (86%; 65–95) of 21, and four (11%; 4–25) of 36, respectively, who did not receive a boost. The vaccine was well tolerated; no toxicities were reported in 75 (54%) of 140 patients with cancer following the ...
SummaryMany body surfaces harbor organ-specific γδ T cell compartments that contribute to tissue integrity. Thus, murine dendritic epidermal T cells (DETCs) uniquely expressing T cell receptor (TCR)-Vγ5 chains protect from cutaneous carcinogens. The DETC repertoire is shaped by Skint1, a butyrophilin-like (Btnl) gene expressed specifically by thymic epithelial cells and suprabasal keratinocytes. However, the generality of this mechanism has remained opaque, since neither Skint1 nor DETCs are evolutionarily conserved. Here, Btnl1 expressed by murine enterocytes is shown to shape the local TCR-Vγ7+ γδ compartment. Uninfluenced by microbial or food antigens, this activity evokes the developmental selection of TCRαβ+ repertoires. Indeed, Btnl1 and Btnl6 jointly induce TCR-dependent responses specifically in intestinal Vγ7+ cells. Likewise, human gut epithelial cells express BTNL3 and BTNL8 that jointly induce selective TCR-dependent responses of human colonic Vγ4+ cells. Hence, a conserved mechanism emerges whereby epithelia use organ-specific BTNL/Btnl genes to shape local T cell compartments.
Regulatory T cell (Treg) therapy has the potential to induce transplantation tolerance so that immunosuppression and associated morbidity can be minimized. Alloantigen-reactive Tregs (arTregs) are more effective at preventing graft rejection than polyclonally expanded Tregs (PolyTregs) in murine models. We have developed a manufacturing process to expand human arTregs in short-term cultures using good manufacturing practice-compliant reagents. This process uses CD40L-activated allogeneic B cells to selectively expand arTregs followed by polyclonal restimulation to increase yield. Tregs expanded 100- to 1600-fold were highly alloantigen reactive and expressed the phenotype of stable Tregs. The alloantigen-expanded Tregs had a diverse TCR repertoire. They were more potent than PolyTregs in vitro and more effective at controlling allograft injuries in vivo in a humanized mouse model.
CD46 is a complement regulator with important immune-related roles. CD46 functions as a pathogen receptor and is a potent co-stimulator for the induction of interferon-γ (IFN-γ)-secreting T helper 1 (TH1) effector T cells and their subsequent switch into interleukin-10 (IL-10)-producing regulatory T cells. Here, we identify the Notch protein family member Jagged1 as a new physiological ligand for CD46. Further, CD46 regulates Notch receptors and ligands expression during T cell activation and disturbance of the CD46-Notch crosstalk impedes IFN-γ induction and IL-10 switching. Importantly, CD4+ T cells from CD46-deficient patients and patients with hypomorphic Jagged1 mutations (Alagille Syndrome) fail to mount appropriate TH1 responses in vitro and in vivo suggesting that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.